Adiabatic Atmosphere

Physics 9HB, Joe Kiskis

1 Adiabatic ideal gas

For an ideal gas at constant temperature PV = const. (This is an immediate consequence of the ideal gas law.) Suppose instead that the ideal gas undergoes a change in which there is no heat flow. That is called *adiabatic*. Then $PV^{\gamma} = const.$, with $\gamma = C_P/C_V \approx 7/5$ for air. We are more interested in the density than the volume. Since the volume and density are inversely related, the adiabatic relation becomes $P \propto \rho^{\gamma}$.

It will turn out to be convenient to fit the temperature into this also. If $PV^{\gamma} = const.$, and PV = nRT, then $PVV^{\gamma-1} = const.$, and $TV^{\gamma-1} = const.$ Or, in terms of the density, $T \propto \rho^{\gamma-1}$.

2 Adiabatic atmosphere

As we will discuss in lecture, the atmosphere in which the pressure and the density are related by $P \propto \rho^{\gamma}$ is just stable. Let us assume that the pressure and the density are so related at each elevation z. The ground is z = 0.

Now we combine $-\partial_z P = \rho g$ with $P \propto \rho^{\gamma}$:

$$P' \propto \rho^{\gamma - 1} \rho' \tag{1}$$

$$-\rho g \propto \rho^{\gamma-1} \rho' \tag{2}$$

$$g \propto \rho^{\gamma-2} \rho'.$$
 (3)

Using $T \propto \rho^{\gamma-1}$, we see that the RHS is proportional to T'. Thus, we have the very simple result that T' = const.!! That means that T is of the form a + bz. It is more convenient to write this in the physically relevant way

$$T(z) = T_0(\frac{z_0 - z}{z_0}). (4)$$

 T_0 is the temperature at the ground z = 0, and z_0 is the top of the atmosphere where $T \to 0$. You should draw yourself a graph of this function.

Using the adiabatic relations $T \propto \rho^{\gamma-1}$ and $P \propto \rho^{\gamma}$, we obtain the corresponding results

$$\rho(z) = \rho_0 \left(\frac{z_0 - z}{z_0}\right)^{1/(\gamma - 1)} \tag{5}$$

and

$$P(z) = P_0(\frac{z_0 - z}{z_0})^{\gamma/(\gamma - 1)}. (6)$$

Draw pictures of these two too. Hint: It is important to consider whether the powers on the RHS's are positive or negative or greater or smaller than

All these functions vanish at $z = z_0$ which is, therefore, the top of the atmosphere.

3 Problem

Problem: Use the known values of P_0 and ρ_0 to determine an expression and a numerical value for z_0 . Then do the same for the constant T', which is called the *adiabatic lapse rate*. How much cooler should it be at Lake Tahoe than in Davis?