Fluid kinematics

Physical quantities

First we need away to describe the state of the fluid. The fluid fills up aregion of space
and time. So quantities that describe it are functions of t and x. The values of the physical
quantities depend on when and where you look. There isthe density p, the pressure P, and
the velocity v. All these are functions of t and x. The density and pressure are scalar fields.
The velocity isavector field. It is vector attached to each space-time point. The vector isthe
velocity at that time and place.

Streamlines
Form curves

Consider the vector field v(t,x) at afixed time.
by joining these vectors. Start at the point X, and move to
the pointsx, and x, /r with the

X1 =X +€v(Xq) construction

'Xz =x1 +&v(xy) ‘/*/V

In the limit of small €, this gives a curve x(s) which has as it tangents
the velocity. Explicitly, the tangent to x(s) is

dx(s) _1

4 "% [X(s+€) = x(3)]

= % [x(s) +ev(x(s)) - (3]
= V(X(S))

All thisis at fixed t. Thus, to construct the streamline x(x,,s) through x,, at timet, one
q ( ) must solve the system of ordinary differential equations
X\S

=Vit, X(s
2 =v(t x(9)
at fixed t. The collection of al these streamlines makes a
picture.
A particle in the fluid follows a path which has avel ocity
dx )
—= = v(t, x(t



Thisissimilar to the previous equation, but it isal t'sand no s sin this equation. If the
velocity field isstatic V(t, X) = Vv(X), then the two equations become the same, and the
particle of fluid follows a streamline.

Kinds of flows

» streamline akalaminar vs. turbulent
e compressible vs. incompressible

e ViSCOUSVS. INVisScous

* rotational vs. irrotational

» steady vs. unsteady aka time-dependent

We will deal mostly with steady, incompressible flow.

Continuity

The current of massis ] = pV . We know that mass is conserved in nonrelativistic fluid
flow. What are the consequences? Let’s see. Consider asmall cube of volume dV=dxdydz.

We must have that the flux of mass out of the cube is minus the time rate of change of the
mass inside.
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Thus, we have [1[] = _Ep . Thisexpresses local conservation of mass. It is called the

continuity equation.

Circulation



It is convenient to have a measure of the extent to which the flow is going around in circles.
Thisiscaled thecirculation. I can test the circulation by putting alittle paddle wheel in the

fluid. The axis of the paddle wheel is T . The angular velocity isT . The velocity of a
paddlewhichisat a

displacement r from the
axisisU=00 Xr.The
velocity of thefluid at the
paddleisv. The part of v
that istangent to the rim of
the wheel pushes the wheel
around. Let thecircle of the
paddle wheel be x(s). sisarc
dx
length. Thetangent — isa
g g ds

X
unit vector. The component of v along the wheel is vV Bccji_s . Therelative speed of the

X
paddle and the tangentia part of the fluid flow is v ijl—s — U. Suppose that the wheel
rotates so that the average of this quantity over the whedl is zero. That gives
ax
f — = I dsi
¢ ds

§ dx Cv = 2rru = 2mrwr = 2rr D
]

The quantity on the LHS isthelineintegral of the velocity around the curvel” (whichin
this case isthe circle of the paddle whedl). Thislineintegral
f dx [V iscalled the circulation. It measures the extent to which the fluid is flowing

r
around the path I".

Local circulation and the curl of the velocity field
Now let’slook at the circulation around asmall circle with radiusr asr — 0 and small area

dA. The result will be that the small circulation is dC = dA [ X v. To get this, we have
to assemble a number of pieces. | placethe circlein the x,y plane so that dA isinthez
direction.

y /" (x,y)=(cos 8, sinB)r 0<B6<21
/ 8 % =(-sin6,cos0)r

X Thisgivesthe parameterization of the circle and its tangent.
The next step isto look at the velocity field on the circle.
Since the circleis small, we can express the velocity in a

Taylor expansion about the center. That gives
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For the y component of v, thereisasimilar expression with the subscript changed from x
toy.

dx
Next we use these expressions for v and the one above for @ to compute
X :
v Dd— = (—smevx + cosBv, )r
de y

. : 2 : 2

=-9g ne[vX + cosBd,v, +snBd yvx]r + cose[vy +cosf0 v, + smeayvy]r
In the second line of this expression, the v’ sand their derivatives are evaluated at the origin.
The notation 0 7% Isused. To compute the circulation around the circle, this must be

integrated over 0 from zero to 21t Only the terms with cos® 8 and sin® 0 survive That
gives
211 d
dC, = [ dév Bd—e =12 (d,vy — vy )
0
Thisisthe circulation around the small circle perpendicular to the z axis. There are similar
expressions for circles perpendicular to the x and y axes.

2
C, = J’n dév Bd—x :1Tr2(ayvZ —azvy)
I dede— r2(9,vy, —0yV,)

Sincethe areavector isdA =TT 2 in the first case of the circle of the x,y plane, we have
dC = dA [IJ x v. Thisisalso true for an arbitrary orientation of the little circle. This
shows that the curl gives the circulation around a small path. The curl of the velocity field is
called thevorticity Q = [1 X v.

To get alittle more fed for this, consider the case of afluid in ssimple circular motion
around the origin with angular

velocity w.
Since the speed at radiusr is wr, o)
dC =2mr(rw) = 2w [HA but A

dsodC=dA [ xV so

[l X v =2m. Thisrelates the curl
to the angular velocity inasimple
case.



