Physics 223B, Joe Kiskis

Classical groups

These are Lie groups that are subgroups of GL(n,C).

Special groups

n vectors in an n -dimensional vector space determine a volume: $x_{i}=e_{j} x_{i}^{j}$ $i=1, \ldots, n$ gives the volume $v=\epsilon_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$. After a transformation, there are n new vectors $x_{i}^{\prime}=e_{k} D_{j}^{k} x_{i}^{j}$ and a new volume $v^{\prime}=\epsilon_{i_{1} \ldots i_{n}} D_{j_{1}}^{i_{1}} x_{1}^{j_{1}} \ldots D_{j_{n}}^{i_{n}} x_{n}^{j_{n}}$. To get $v=v^{\prime}$ for any set of vectors x_{i}, we need $\epsilon_{i_{1} \ldots i_{n}} D_{j_{1}}^{i_{1}} \ldots D_{j_{n}}^{i_{n}}=\epsilon_{j_{1} \ldots j_{n}}$ or $\operatorname{det} D=1$. Transformations satisfying this condition form a group-the special linear group $\operatorname{SL}(\mathrm{n}, \mathrm{C})$.

Metrics

For a more refined structure, a metric is introduced. $g\left(x^{\prime}, x\right) \in C$ or R for two vectors x and $x^{\prime} . g$ is nonsingular and linear on $x g\left(x^{\prime}, a x_{1}+b x_{2}\right)=$ $a g\left(x^{\prime}, x_{1}\right)+b g\left(x^{\prime}, x_{2}\right)$.
Bilinear metrics are also linear on $x^{\prime} g\left(a x_{1}^{\prime}+b x_{2}^{\prime}, x\right)=a g\left(x_{1}^{\prime}, x\right)+b g\left(x_{2}^{\prime}, x\right)$.
Sesquilinear metrics are still linear on x, but on $x^{\prime} g\left(a x_{1}^{\prime}+b x_{2}^{\prime}, x\right)=a^{*} g\left(x_{1}^{\prime}, x\right)+$ $b^{*} g\left(x_{2}^{\prime}, x\right)$.
Bilinear symmetric: bilinear and $g\left(x^{\prime}, x\right)=g\left(x, x^{\prime}\right)$.
Sesquilinear symmetric: sesquilinear and $g\left(x^{\prime}, x\right)=g\left(x, x^{\prime}\right)^{*}$.
Bilinear antisymmetric: bilinear and $g\left(x^{\prime}, x\right)=-g\left(x, x^{\prime}\right)$.

Orthogonal groups

The field is the reals. For a bilinear symmetric metric, we can find a basis with $g_{i j}=g\left(e_{i}, e_{j}\right)=\operatorname{diag}(1, \ldots, 1,-1 \ldots,-1)$ with $n_{+} 1$'s and $n_{-}-1$'s. The orthogonal transformations $O\left(n_{+}, n_{-}, R\right)$ are those that preserve that form of the metric so that $g_{i j}=g_{k l} D_{i}^{k} D_{j}^{l}$. The further requirement that $\operatorname{det} D=1$ gives the special orthogonal groups $S O\left(n_{+}, n_{-}, R\right)$.

Unitary groups

Now the field is the complexes. A sesquilinear symmetric can also be put in the same diagonal form. Then the transformations satisfying $g_{i j}=g_{k l} D_{i}^{k *} D_{j}^{l}$ form the unitary group $U\left(n_{+}, n_{-}\right)$and with $\operatorname{det} D=1$, the special unitary group $S U\left(n_{+}, n_{-}\right)$.

Symplectic groups

The field can be R or C . The bilinear antisymmetric metrics can be nonsingular for even n and satisfy $g_{j i}=-g_{i j}$. The symplectic groups $S p(n, R$ or $C)$ preserve a metric with this property. A common choice for g is

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \tag{1}\\
0 & 0 & \ldots & 1 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & -1 & \ldots & 0 & 0 \\
-1 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

