Physics 223B, Joe Kiskis

Classical groups

These are Lie groups that are subgroups of GL(n,C).

Special groups

n vectors in an n-dimensional vector space determine a volume: $x_i = e_j x_i^j$ i = 1, ..., n gives the volume $v = \epsilon_{i_1...i_n} x_1^{i_1} ... x_n^{i_n}$. After a transformation, there are n new vectors $x'_i = e_k D_j^k x_i^j$ and a new volume $v' = \epsilon_{i_1...i_n} D_{j_1}^{i_1} x_1^{j_1} ... D_{j_n}^{i_n} x_n^{j_n}$. To get v = v' for any set of vectors x_i , we need $\epsilon_{i_1...i_n} D_{j_1}^{i_1} ... D_{j_n}^{i_n} = \epsilon_{j_1...j_n}$ or det D = 1. Transformations satisfying this condition form a group—the special linear group SL(n,C).

Metrics

For a more refined structure, a metric is introduced. $g(x', x) \in C$ or R for two vectors x and x'. g is nonsingular and linear on $x g(x', ax_1 + bx_2) = ag(x', x_1) + bg(x', x_2)$.

Bilinear metrics are also linear on $x' g(ax'_1 + bx'_2, x) = ag(x'_1, x) + bg(x'_2, x)$. Sesquilinear metrics are still linear on x, but on $x' g(ax'_1 + bx'_2, x) = a^*g(x'_1, x) + b^*g(x'_2, x)$.

Bilinear symmetric: bilinear and g(x', x) = g(x, x'). Sesquilinear symmetric: sesquilinear and $g(x', x) = g(x, x')^*$.

Bilinear antisymmetric: bilinear and g(x', x) = -g(x, x').

Orthogonal groups

The field is the reals. For a bilinear symmetric metric, we can find a basis with $g_{ij} = g(e_i, e_j) = diag(1, ..., 1, -1..., -1)$ with n_+ 1's and n_- -1's. The orthogonal transformations $O(n_+, n_-, R)$ are those that preserve that form of the metric so that $g_{ij} = g_{kl}D_i^kD_j^l$. The further requirement that det D = 1 gives the special orthogonal groups $SO(n_+, n_-, R)$.

Unitary groups

Now the field is the complexes. A sesquilinear symmetric can also be put in the same diagonal form. Then the transformations satisfying $g_{ij} = g_{kl}D_i^{k*}D_j^l$ form the unitary group $U(n_+, n_-)$ and with det D = 1, the special unitary group $SU(n_+, n_-)$.

Symplectic groups

The field can be R or C. The bilinear antisymmetric metrics can be nonsingular for even n and satisfy $g_{ji} = -g_{ij}$. The symplectic groups Sp(n, R or C) preserve a metric with this property. A common choice for g is