Physics 223B, Joe Kiskis

Key facts

- $\mathrm{SU}(2)$'s
- If α is a root, then $n \alpha$ is not a root unless $n=0, \pm 1$.
- For $\mathrm{SU}(3)$, we got the simple roots fro the explicit Gell-Mann matrices. More generally, the possible roots come from the classification theorem of all possible simple Lie algebras.
- Master equation:

$$
\begin{equation*}
\frac{2 \alpha \cdot \beta}{\alpha^{2}}=q-p \tag{1}
\end{equation*}
$$

- Simple roots (positive roots not the sum of other positive roots)
- If α and β are simple roots, $\alpha-\beta$ and $\beta-\alpha$ are not roots.
- The number of simple roots is m, the rank of the algebra. They are linearly independent and complete, but not necessarily orthonormal.
- All positive roots are of the form $\sum_{\alpha} k_{\alpha} \alpha$. The sum is over the simple roots, and the k_{α} are non-negative integers.
- The positive roots are built from all possible sums of the simple roots consistent with the master equation. It helps to exploit the Weyl symmetry, the $\mathrm{SU}(2)$'s, and the fact the in the adjoint irrep, the roots are all in " $j=1$ " irreps of the $\mathrm{SU}(2)$'s in their own direction. There are also the m zero "roots" at the center associated with the m diagonal generators.
- The missing commutators are $\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha \beta} E_{\alpha+\beta}$. The $N_{\alpha \beta}$ are determined by using the "known" raising and lowering rules for $\mathrm{SU}(2)$. Each root is in an $\mathrm{SU}(2)$ irrep of each of the $\mathrm{SU}(2)^{\prime}$'s,

Fundamental highest weights and fundamental irreps:

- μ is a highest weight iff $E_{\alpha}|\mu\rangle=0$ for each simple root α.
\bullet

$$
\begin{equation*}
\frac{2 \alpha^{j} \cdot \mu}{\left(\alpha^{j}\right)^{2}}=q-p=q=l^{j} \geq 0 \tag{2}
\end{equation*}
$$

- The $\left(l^{1}, l^{2}, \ldots, l^{m}\right)$ and the components of μ give equivalent information. They specify the (highest) weight vector μ.
- The m fundamental highest weights are those that have exactly one $l^{j}=1$ and the rest of the l 's equal to zero. If the 1 is in position j, the weight is called μ^{j} So the highest fundamental weights μ^{j} are specified by their list of l 's $(0,0, \ldots, 0,1,0, \ldots, 0)$ with exactly one non-zero entry in the j th position.
- Any highest weight is then of the form $\mu=\sum_{j} l^{j} \mu^{j}$ with the l^{j} any collection of non-negative integers.
- In tensor products, the highest weights add, so any irrep μ can be found in the product of the form $\mu^{1} \times \ldots \times \mu^{1} \times \mu^{2} \times \ldots \times \mu^{2} \ldots$ with each μ^{j} appearing l^{j} times.
- All of the weights of an irrep are of the form $E_{-\alpha} E_{-\beta} \ldots|\mu\rangle$ with simple α, β, \ldots. Thus one lowers away from the highest weight in all possible ways consistent with the values of the p 's and q 's. Again, a huge amount of work is saved by exploiting Weyl symmetry. If there is more than one route to a weight, degeneracy needs to be checked.

