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Lie groups and Lie algebras

Topologically the discrete groups are sets of points that can be labeled with
integers. Now we study continuous groups like SO(2) and SO(3) or the classical
matrix groups. These groups are manifolds topologically: locally they look
like pieces of Rn for some n. The elements of the group can be labeled with
a set of n real numbers. For SO(2), n = 1; for SO(3), n = 3; for SO(N),
n = N(N − 1)/2. We want to relate group structure and manifold structure,
i.e. algebra and topology. The local manifold structure is seen in the tangent
vector space. Since any region of the group can be mapped to a region around
the identity e, by a group multiplication, we can concentrate on the area around
e.
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The tangent space at the e is the Lie algebra of the group. It is a vector
space.

Consider a matrix group and put on coordinates xi i = 1, . . . , n. There are
many ways to choose the coordinates. Let the identity have all coordinates zero
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D(0) = e. Look at the region around the identity.

D(x) = e+ xi
∂D

∂xi
|x=0 +

1
2
xixj

∂D

∂xi∂xj
|x=0 (1)

For unitary D, ∂D
∂xi
|x=0 is an antihermitian matrix. Define a hermitian matrix

Tj ≡ i ∂D
∂xj
|x=0 so that

D(x) = e− iTjx
j +O(x2). (2)

For different choices of coordinates, there will be different T ’s. Different sets
will be linear combinations of each other. The Lie algebra is the n-dimensional
vector space with basis {Ti, i = 1, . . . , n} and vectors Tix

i.
Each element of the group near the identity gives an element of the algebra.

A change coordinates on the group G gives a change of basis in the algebra G.
So far, G is just a vector space. What makes it an algebra? That is some

multiplication G × G → G. For SO(3), Ti = Ji and the multiplication or basis
vectors is

[Ji, Jj ] = iεijkJk. (3)

For general vectors a = Jia
i and b = Jib

i,

[a, b] = [Ji, Jj ]aibj = Jk(iεijka
ibj) = i(a× b) · J. (4)

Now it is easy to generalize this to any matrix group. The T ’s are matrices
so that we can define the multiplication of general vectors a = Tia

i and b = Tib
i

by
[a, b] = [Ti, Tj ]aibj . (5)

But how do we know this will work? How do we know that the RHS gives
another element of the algebra? It is ok if

[Ti, Tj ] = ic k
ij Tk. (6)

To show this, consider the commutator at the level of the group elements

D(z) = D−1(y)D−1(x)D(y)D(x) (7)

and calculate it to second order in x and y. The result is

D(z) = 1− [T · y, T · x]. (8)

By continuity and the closure of the group multiplication, this is an element of
the group near the identity 1− iT · z. Thus

[T · y, T · x] = iT · z. (9)

Thus the algebra multiplication rule, as defined above, does close. Further, if we
know the group multiplication rule, then we know z in terms of x and y. Due to
the antisymmetric and bilinear structure of (9), it must be that zk = c k

ij yixj

with c antisymmetric in ij. Thus, (6) is established.
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We see that the commutator in the algebra is determined by the group
multiplication through the commutator in the group. It measures the failure of
the box to close.

Conversely, if we know the commutator in the algebra, we can determine the
group near the origin (see Miller p. 161) using

eAeB = eC (10)

C = A+B +
1
2

[A,B] +
1
12

[A, [A,B]]− 1
12

[B, [B,A]] + . . . . (11)

The structure constants c k
ij are basis specific like a metric is. The commutator

is the multiplication that makes the Lie algebra into an algebra.
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