Main points, Chapter 3, representations

Vector space V.
Linear operators GL(V): $\mathrm{V} \rightarrow \mathrm{V}$
Group G
Representation of G : homomorphism $g \in G \rightarrow U(g) \in G L(V)$
$\mathrm{U}(\mathrm{g}): \mathrm{V} \rightarrow \mathrm{V}$

Equivalence:

$$
\begin{aligned}
& \mathrm{S}: \mathrm{V} \rightarrow \mathrm{~V}^{\prime} \\
& \mathrm{U}^{\prime}=\mathrm{SUS}^{-1}
\end{aligned}
$$

Character: $\chi(\mathrm{g})=\operatorname{Tr} \mathrm{U}(\mathrm{g}) \quad$ (Constant on classes. Same for equivalent reps.)
Basis in $\mathrm{V}: \mathrm{e}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \operatorname{dim} \mathrm{~V}$
Matrix elements of $U(g): U(g) e_{i}=e_{j} D_{i}^{j}(g)$
Reducibility, etc.
Subspace: $\mathrm{V}_{1} \subset \mathrm{~V}$
Invariant subspace: $\mathrm{v}_{1} \in \mathrm{~V}_{1} \rightarrow \mathrm{U}(\mathrm{g}) \mathrm{v}_{1} \in \mathrm{~V}_{1} \forall \mathrm{v}_{1}, \mathrm{~g} \quad$ I.e. $\mathrm{UV}_{1} \subset \mathrm{~V}_{1}$ If there is such a non-trivial V_{1}, then we say that U is reducible. If there is a linearly independent V_{2} with $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}$ and V_{2} is also invarient, then U is fully reducible $=$ decomposable .

There is a basis with $D=\left(\begin{array}{cc}D_{1} & 0 \\ 0 & D_{2}\end{array}\right)$
If there are no non-trivial invariant subspaces, then U is irreducible.
For compact groups, all representations are equivalent to unitary representations.
For unitary representations, reducible \Rightarrow fully reducible.
Tools: Schurs's lemmas.
Irreps of an abelian group are of dimension one.
Orthonormality and completeness of representation matrices for irrep:
$D^{\mu}(g)^{i}{ }_{j}$
μ ranges over the inequivalent irreps.
n_{μ} is the dimension of the irrep μ
i and j run from 1 to n_{μ}
The order of G is n_{G}
Think of the D's as a set of vectors labeled by the collection ($\mu, \mathrm{i}, \mathrm{j}$) and with components labeled by g.
Then the vectors $\sqrt{\frac{n_{\mu}}{n_{G}}} D$ are orthonormal and complete.
The character on the class i in the irrep μ is χ_{i}^{μ}.
The normalized characters $\tilde{\chi}_{i}^{\mu}=\sqrt{\frac{n_{i}}{n_{G}}} \chi_{i}^{\mu}$ are also orthonormal and complete.

Number of irreps = number of classes.
The irrep μ appears in the decomposition of a rep $\tilde{\chi}_{\mu}^{* i} \chi_{i}$ times.
A rep is irreducible iff $\tilde{\chi}^{* i} \chi_{i}=1$

