Main points, Chapter 3, representations

Vector space V. Linear operators GL(V): $V \rightarrow V$ Group G **Representation** of G: homomorphism $g \in G \rightarrow U(g) \in GL(V)$ $U(g): V \rightarrow V$ **Equivalence:** $S: V \rightarrow V'$ $U' = SUS^{-1}$ **Character:** $\chi(g) = Tr U(g)$ (Constant on classes. Same for equivalent reps.) Basis in V: e_i , i=1, ..., dim V **Matrix elements** of U(g): U(g) $e_i = e_j D_i^j(g)$ Reducibility, etc.

Subspace: $V_1 \subset V$

Invariant subspace: $v_1 \in V_1 \rightarrow U(g)v_1 \in V_1 \forall v_1, g$ I.e. $UV_1 \subset V_1$ If there is such a non-trivial V_1 , then we say that U is **reducible**.

If there is a linearly independent V_2 with $V = V_1 \oplus V_2$ and V_2 is also invarient,

then U is **fully reducible = decomposable**. There is a basis with $D = \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}$

If there are no non-trivial invariant subspaces, then U is **irreducible**. For compact groups, all representations are equivalent to **unitary** representations. For unitary representations, reducible \Rightarrow fully reducible.

Tools: Schurs's lemmas.

Irreps of an abelian group are of dimension one.

Orthonormality and completeness of representation matrices for irrep:

 $D^{\mu}(g)^{i}{}_{j}$

 μ ranges over the inequivalent irreps.

 $n_{\mu}\,$ is the dimension of the irrep μ

i and j run from 1 to n_{μ}

The order of G is n_G

Think of the D's as a set of vectors labeled by the collection (μ, i, j) and with components labeled by g.

Then the vectors $\sqrt{\frac{n_{\mu}}{n_G}D}$ are orthonormal and complete.

The character on the class i in the irrep μ is $\chi^{\mu}_{~i}~$.

The normalized characters $\tilde{\chi}_{i}^{\mu} = \sqrt{\frac{n_{i}}{n_{G}}\chi_{i}^{\mu}}$ are also orthonormal and complete.

Number of irreps = number of classes. The irrep μ appears in the decomposition of a rep $\tilde{\chi}_{\mu}^{*i}\chi_{i}$ times. A rep is irreducible iff $\tilde{\chi}^{*i}\chi_{i} = 1$