Quiz for lecture 4

Suppose that I have a set of states $|n l m\rangle$ and I am interested in matrix elements of the position operator $\vec{x}=(x, y, z)$. Suppose that after a fifty page calculation, I have discovered that $\langle 221| z|111\rangle=0$. I would also like to know $\langle 220| x|11-1\rangle$. What should I do? What is the result?

Solution:
Use the Wigner-Eckart theorem!
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the three parts of an $\mathrm{l}=1$ tensor operator.
The $\mathrm{l}^{\prime \prime}=1, \mathrm{~m}^{\prime \prime}=0$ piece is z .
$\left\langle n^{\prime} l^{\prime} m^{\prime}\right| O_{m^{\prime \prime}}^{l^{\prime \prime}}|n l m\rangle=\langle O\rangle\left\langle l^{\prime} m^{\prime} \mid\left(l^{\prime \prime} l\right) m^{\prime \prime} m\right\rangle$
$\langle 221| z|111\rangle=\langle O\rangle\langle 21 \mid(11) 01\rangle=\langle O\rangle \frac{1}{\sqrt{2}}$
Thus $\langle O\rangle=0$.
The operator x is a linear combination of $\mathrm{l}=1, \mathrm{~m}=1$ and $\mathrm{l}=1, \mathrm{~m}=-1$ pieces, so
$\langle 220| x|11-1\rangle=\langle O\rangle \times$ (linear combination of Clebsches) with the same reduced matrix element. Thus it is also zero.

