
Physics 223B, winter 2014

Reading 12, for Thursday, Feb. 20

Georgi, Chs. 6 and 7

The rest of the course will be a more general and organized study of Lie
algebras. However, a little background may be helpful in providing more context
for the study. For that, you may want to look at

• Georgi, Ch.2

• Classical Lie groups (on our website)

• Lie groups and Lie algebras (on our website)

Section comments on Ch. 6:

• ROOTS AND WEIGHTS: More new words; there’s no end to the jar-
gon. As he says, the idea is to generalize the J3, J± SU(2) method to
other simple Lie algebras. The generalization of J3 is the Cartan subalge-
bra with m (rank of the algebra) commuting generators Hi, i = 1, ...,m.
The eigenvalues of these operators are the weights µi which generalize the
eigenvalue M of J3 in SU(2).

• ROOTS: The definition of the way the algebra acts on itself in the adjoint
representation is in Eq. 6.8. In the adjoint representation, where the Lie
algebra acts on itself by commutation, the weights are called roots αi.

• RAISING AND LOWERING OPERATORS: Clearly, this generalizes the
J± and gets a little more technical. The results that will be used often
are Eqs. 6.19, 6.20, 6.21, and 6.36.

Section comments on Ch. 7:

• SU(3): This chapter does the Chapter 6 stuff for the SU(3) example.
It should make things a lot clearer. Also SU(3) is itself very important
because it has many applications in particle physics. The figures on pages
100 and 101 are very famous.

Reading 13, for Tuesday, Feb. 25, and Thursday,
Feb. 27

Georgi, Chs. 8 and 9
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This really goes to the heart of this approach to Lie algebras. One main
result shows how to construct the entire Lie algebra from the simple roots. The
other main result is a determination of all the irreps. of a simple Lie algebra.
This is a generalization of the method used for SU(2) in Tung around p. 104.
This is a big part of what we want to know. Many of the arguments are short
but tricky. In later chapters, he determines what all the possible sets of simple
roots are. This is the famous classification of simple Lie algebras. Depending
upon what we decide to do for the last part of the course, we may or may not
cover that.

Comments on Ch. 8:

• 8.1 Positive weights: The definition of a positive weight is given. That
gives an ordering and the idea of a highest weight.

• 8.2 Simple roots: Next comes the crucial notion of simple root. The simple
roots are a basis (but not orthonormal) in the root vector space. All the
roots can be determined from the simple roots. Always pay attention to
the SU(3) example. If you have that down cold, then you are doing well.

• 8.3 Constructing the algebra: Wit all the roots known, the last step in
constructing the the associated generators is getting the normalization
right. I.e. what are the Nαβ in [Eα, Eβ ] = NαβEα+β?

• 8.4 Dynkin diagrams: Dynkin diagrams are a shorthand way to list the
simple roots. We will not use them much, but they are very important in
the classification theorem.

• 8.5, 8.6, 8.10 and 8.11 G2 and C3 examples.

• 8.7, 8.8, and 8.9: Cartan matrix, etc. These contain additional techniques
for finding all the roots and generators. From a theoretical perspective, it’s
important to know that this can be done. It’s very rare that you will have
to go through the process ourself in the course of a physics calculation.
Almost always, you can look up the results you need for a particular
algebra. However, you will need to be familiar with the fundamentals to
understand what you find and to know what questions to ask.

• 8.12 Fundamental weights: Do not be fooled by the way that the discus-
sion of fundamental weights is tacked onto the end of the chapter. It is
very important. It gives all the irreps of the algebra. Everything about
an irrep is determined by its highest weight, and this gives all the pos-
sible highest weights. Further, every highest weight is some sum of the
m fundamental weights which are the highest weights for the fundamen-
tal representations. And every irrep is found in the corresponding direct
product of fundamental reps. This is just great!
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In Ch. 9, all this is applied to SU(3). If you get everything here, then you
will know more about SU(3) than the average particle physicist and will be in
good shape.

Section comments on Ch. 9:

• 9.1 Fundamental representations of SU(3): Simple roots, fundamental
weights, and fundamental reps—the bricks from which everything else
is built.

• 9.2 Constructing the states: This elaborates on the general method (not
just SU(3)) for finding all of the states in a irrep.

• 9.3 Weyl group: This symmetry of weight diagrams can help in filling out
the states of an irrep.

• 9.4 Complex conjugation: Another useful way to find a new representation
(unless the starting irrep is real).

• 9.5 Examples of other representations: This turns the crank to get more
SU(3) irreps. The ones you will encounter often are 3, 6, 8, and 10 (and
their complex conjugates (except, of course, 8 which is real)).

Quarks carry a 3 of color and antiquarks a 3̄, but all observed particles
are color singlets. The light baryons made of u, d, and s quarks are 8’s
and 10’s of SU(3) flavor while mesons are 1’ and 8’s. The quarks carry
the flavor 3.

Reading 14, for Tuesday, Mar. 4

Georgi, Chs. 10 and 12 (But not all sections are important. Check
the notes below.)

These are the last general theory chapters for the core of the course. In
these chapters, some useful tools are presented. They are mainly ways to deal
with direct products and their reduction in SU(3). The part to concentrate on
is Sec. 10.5. The document “Notes on the tensor method for decomposition”
on our website is a supplement to this section. Some of the results (if not the
methods) are something every particle physicist knows by heart: 3× 3 = 3̄ + 6,
3× 3̄ = 1 + 8, 3× 3× 3 = 1 + 8 + 8 + 10 .

Section comments on Ch. 10:

• 10.1 and 10.2: The machinery of tensors is introduced. This is similar
to what we did in Tung. Here, it is specialized to SU(3). Also there
are some new aspects with the inclusion of bra vectors and the complex
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conjugate of the defining, fundamental irrep. (You can find a more sys-
tematic discussion in Ch. 13 of Tung.) There’s some detail on how tensors
transform.

• 10.3 Irreducible representations and symmetry: The special properties of
the tensors that transform as the irreps that we already know about are
given.

• 10.4 Invariant tensors: The existence of the invariant tensors δij and εijk
is noted. These are heavily used in the work that follows.

• 10.5 Clebsch-Gordan decomposition: This supposedly shows how the in-
variant tensors can be used to carry out the decomposition of direct prod-
uct reps. This is the main point of the work. For more on this, see the
document “Notes on the tensor method for decomposition” on our website.

• 10.6 through 10.10: These are concerned with technical points of less inter-
est. The notion of triality is worth knowing. It can be handy occasionally.

• 10.11 The weights of (n,m): This is a graphical method for simplifying the
determination of the weights and states of an SU(3) irrep.

• 10.12 Generalization of Wigner-Eckhart: The section title pretty much
says it all. The two examples he does are the ones you might actually
want to know for a calculation.

• 10.13 through 10.16: Way more than you ever wanted to know about
SU(2). Not recommended.

Comments on Ch. 12:
This gives the cookbook rules for an alternative method for decomposing a

direct product using Young tableaux. The main thing is Sec. 12.2 wherein the
rules are laid out in a short, simple, and reasonably clear manner. A proof that
the rules give the correct results is not included. In fact, the proof is rarely given,
and I have never seen one that is comprehensible. It’s a handy technique, but,
personally, I don’t generally use results that I can’t prove and really understand
myself. It’s too easy to make mistakes when you don’t understand what’s going
on. In addition, it’s not fun. But no need to consider my eccentric opinions.
We can try to talk about this method anyway.

Reading 15, for Tuesday, Mar. 11

Georgi, Chs. 11, 16, 17

If you are rusty on isospin, you might want to do a quick review of that first.
However, Georgi would not be at the top of my list for that. You may have
another high energy book that does a better job.
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Chapter 11

Here we have the famous, and now venerable, generalization of SU(2)flavor
(i.e. I-spin) to SU(3)flavor. In terms of quarks, it’s u and d goes to u, d, and s.

Section comments:

• 11.1 Eightfold way: The very closely related concepts of strangeness and
hypercharge are introduced. Lots of new particles were discovered in the
early ’60’s. With a lot of work, it was finally determined that SU(3) is
the right symmetry group to use to organize them. The main input is the
existence of a new quantum number conserved by the strong interactions:
strangeness S. It is also convenient to use hypercharge Y ≡ B + S. It is
an observation that Q = T3 + Y/2. (Q is the electric charge and T3 is the
diagonal I-spin generator.)

The observed particles of nature appear organized into the SU(3) multi-
plets 1, 8, and 10. Thus, particles can be labeled by quantum numbers
that specify where they appear in an SU(3) irrep. We have seen J and
J3 of SU(2) angular momentum and I and I3 of SU(2) isospin. Now, in
SU(3) flavor, we label the irrep by its highest weight µ and locations in it
with weights that are eigenvalues of the Cartan subalgebra H1 = T3 = I3
and H2 = (

√
3/2)Y . You will want to be familiar with the multiplets in

the figures 10.8 (or 10.10), 10.11, and 11.31.

• 11.2 Gell-Mann-Okubo formula: This is one of the classic results of the
Eightfold Way (another name for the SU(3)flavor). This calculation of
mass splittings draws on Sec. 10.12. It remains one of the few calcula-
tions in elementary particle physics that says something substantive about
masses. (Beware that in Eq. 11.19 the T’s on the LHS and RHS are not
the same.)

Notice that this approach gets results from symmetry arguments without
introducing an underlying quark model. With the benefit of hindsight,
such an approach seems seriously wrongheaded. At the time, it wasn’t.
This preceded the quark model. Even after the quark model arrived, many
considered quarks to be just a convenient nemonic to aid in calculation.
The last vestiges of such thinking were not eradicated until the November
revolution of 1974—the discovery of the charmed quark. Although we all
now believe in quarks, we have built a theory QCD which is designed to
reproduce the experimental result that an individual quark will never be
observed in isolation.

• 11.3 Hadron resonances: Resonance is the name for a “particle” that has a
very short lifetime (∼ 10−24 sec.) due to decay by the strong interaction.
In that very short time, the particle does not travel far enough to be ob-
served directly. We know of it only indirectly through its decay products.
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The main result here is the mass splitting formula for the 10. It is the
equal spacing rule in 11.34. The prediction of the Ω− mass is one of the
few successful mass predictions ever made.

• 11.4 Quarks: What could I possibly add?

All of this was worked out before the development of and thus without the
benefit of what we now call the standard model.

Chapter 16
Here we deal with the same group SU(3) but with completely different

physics. Each flavor and spin of quark comes in three colors. The transfor-
mations that scramble the colors are the group SU(3)color. It is the gauge
group of QCD. The quarks carry a fundamental 3 of color. At our present level
of understanding, this is much more important than flavor because the colors
are charges for the force field (with quanta gluons) in QCD that gives the strong
interaction. The flavors don’t seem to have any apparent purpose.

First there are the physics reasons for introducing color and SU(3)color.
Then the assertion that we need a rule that restricts the hadrons to be color
singlets. To understand where that might come from, there are some very
qualitative comments on forces and dynamics and why singlets might be the
most strongly bound. The TT form of the interaction form as in Eq. 16.8 fits
in the picture.

From a technical perspective, the important point how to construct color
singlets from triplet quarks and anti-quarks.

The discussion of mass splittings would fit better back Ch. 11 as an alterna-
tive take on the pure group theory appproach.

Chapter 17
This is a very brief discussion of the role of color hyperfine interactions in

baryon mass splittings. It’s the most non-trivial result from the quark model.

Reading 17, for Thursday, Mar. 13

Selections on SU(5) and SO(10) as GUT gauge groups

Warning: If you have not had 245B or by some other route became familiar
with the standard model, these readings may not make much sense.

The minimal read is Sec. 14.1 of Cheng and Li. For my money, it is the best
quick introduction to SU(5) as a GUT. If you want to get into the particle
physics a bit more, Sec. 14.2 on SSB is the next thing to look at. The other
topics like running couplings, proton decay, are baryogenesis are fascinating
particle physics but more than we can get into in this quarter.
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In Georgi, the heart of Ch. 18 is Sec. 18.6. It covers material similar to Sec.
14.1 of Cheng and Li. Georgi Sec. 18.7 is similar to Cheng and Li Sec. 14.2 in
covering SSB.

For a quick introduction to the next step up, see Kaku Sec. 18.7 for the basics
of SO(10) as a GUT. And it somehow escaped my attention until just now that
the SO(10) chapter near the end of Georgi was greatly expanded from the first
edition and now has more about SO(10) as a GUT gauge group. I haven’t read
it yet.

There is material in Zee, Chapters VII.5, VII.6, VII.7 and, of course, in many
other books too.
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