Spinless particles scattering through states of $\mathbf{J = 0 , 1 ,}$ or 2 (from the problem set)

For spinless particles A and B in two to two scattering $A+B \rightarrow C \rightarrow A+B$ through the state C with $\mathrm{J}=0,1$, or 2 , the general result for the scattering amplitude specializes to $T(\theta, \varphi)=\sum_{J} T_{J} P_{J}(\cos \theta)$. (This was given in a handout. The energy dependence in T and T_{J} is suppressed.) Thus if a single J channel dominates, we have $\frac{d \sigma}{d \Omega} \propto\left|P_{J}(\cos \theta)\right|^{2}$, and the angular distribution is $1, \cos ^{2} \theta$, and $\left[(3 / 2) \cos ^{2} \theta-1 / 2\right]^{2}$ for $\mathrm{J}=0,1$, and 2, respectively. For $\mathrm{J} \neq 0$, this is not spherically symmetric because not all the J_{3} states are available. In particular, spinless particles approaching along the 3-axis can have $\mathrm{J}_{3}=0$ only.

