Color singlets have integer electric charge:

Singlets are found only in the decomposition of reps. with triality zero:

1) The only invariants of $\mathrm{SU}(3)$ are δ_{j}^{i}, $\varepsilon^{i j k}$, and $\varepsilon_{i j k}$.
2) All the irreps are found in the decomposition of the products of the fundamentals. In the case of $\mathrm{SU}(3)$, there are two fundamentals, 3 and 3^{*}.
3) Start with an arbitrary product of m factors of 3 and n factors of 3^{*}. The tensors that carry the rep. have components with m indices of 3 type and n of 3^{*} type. A singlet has no indices. To find a singlet (if it exists), we can contract with the invariants to try to get down to a non-vanishing tensor with no indices, i.e. a singlet.
4) Using δ_{j}^{i} reduces both m and n by one, while using $\varepsilon^{i j k}$, or $\varepsilon_{i j k}$ reduces either m or n by three. Thus in both cases the triality $=m-n \bmod 3$ does not change. Since $m=n=0$ for the singlet, its triality is zero, and it can be found only in a product that has triality zero.

If the triality is zero, then the electric charge is integer multiples of the proton charge:
Let m_{U} be the number of up type quarks (u, c, t), and let m_{D} be the number of down type ($\mathrm{d}, \mathrm{s}, \mathrm{b}$) quarks. For the anti-quarks, use n_{U} and n_{D}. Also write $m=m_{U}+m_{D}$ and $n=n_{U}+n_{D}$. Then in units of the proton charge, the charge of a combination of quarks is

$$
\begin{aligned}
\mathrm{Q}= & (2 / 3) \mathrm{m}_{\mathrm{U}}-(1 / 3) \mathrm{m}_{\mathrm{D}}-(2 / 3) \mathrm{n}_{\mathrm{U}}+(1 / 3) \mathrm{n}_{\mathrm{D}} \\
& =(2 / 3)\left(\mathrm{m}_{\mathrm{U}}+\mathrm{m}_{\mathrm{D}}\right)-\mathrm{m}_{\mathrm{D}}-(2 / 3)\left(\mathrm{n}_{\mathrm{U}}+\mathrm{n}_{\mathrm{D}}\right)+\mathrm{n}_{\mathrm{D}} \\
& =(2 / 3)(\mathrm{m}-\mathrm{n})-\mathrm{m}_{\mathrm{D}}+\mathrm{n}_{\mathrm{D}},
\end{aligned}
$$

which is integer for triality zero.

