
Entropy

Thermodynamic results
Most important things about entropy:

Entropy is a state variable.
In an infinitesimal, quasi-equilibrium process, the entropy change
of a system is

dS = dQ/T.
Second Law:

For any process in an isolated system, ΔS ≥ 0.
(Equality holds for reversible processes.)

Thus, if an isolated system has a macroscopic variable that is free to
change, equilibrium in that variable will be obtained when it takes the
value that maximizes the entropy.

Considering S as a function of U and V and using dS=dQ/T, we can show
that

∂S
∂U V

=
1
T

  and   ∂S
∂V U

=
P
T

(These last relations are not in the text, but you should know them.)

There are a few important results that follow from the fact that
entropy is a state variable and that dS=dQ/T for quasi-equilibrium
processes.

Entropy change for each of the four basic thermodynamic 
processes.

Entropy change for a free expansion.
How the second law in the version above determines the 

direction of heat flow
How the second law in the version above limits the efficiency 

of heat engines.
How to exploit the fact that entropy is a state variable to 

calculate entropy changes in irreversible processes.



Partial derivatives of the entropy

We will now show that

∂S
∂U V

=
1
T

  and   ∂S
∂V U

=
P
T

Considering S as a function of U and V, i.e. S(U,V), from calculus we
have

€ 

dS =
∂S
∂U V

dU +
∂S
∂V U

dV  .

At the same time, we have

€ 

dS =
dQ
T

=
dU + dW

T
=
dU + PdV

T
=
1
T
dU +

P
T
dV

In comparing these two expressions for dS, we can equate the two
versions of the factors multiplying dU and dV, respectively, to obtain
the desired relations.

Statistical mechanical view of entropy:

Microstates and macrostates:
Macrostate: a specification of the system that gives definite values to
the macroscopic state variables, e.g. P, V, T, U.
Microstate: a complete description of the system that specifies the
values of all the microscopic variables at the atomic level.
In most cases, for macroscopic systems, there are a huge number of
microstates consistent with a given macrostate. This multiplicity of
microstates is called w. Generally, the number of microstates is a
steeply increasing function of both the internal energy U and the size
of the system, e.g. the number of molecules or the number of degrees
of freedom. Let’s illustrate this with a toy model.



Toy model

This can be thought of as an extreme simplification of a quantum
mechanical model of a solid crystal of atoms such as table salt. We
need to consider quantum mechanics in at least a very basic way
because a classical model will always give infinity for the entropy. So
we will consider N atoms in the solid. Each atom can oscillate in each of
the three directions of space, so there are M=3N modes of oscillation
into which to put energy. The quantum mechanics comes in by saying
the energy is quantized and comes in units of a finite size ε .  Here is
the notation:
N = number of atoms
M = 3N = number of modes
i = 1, 2, 3, …, M = mode label
ε = energy unit
ni = number of units of energy in mode i

€ 

U = ε ni
i=1

M

∑   =  total energy

€ 

n =
U
ε

= ni
i=1

M

∑

U is a macroscopic state variable. Knowledge of U specifies a
macrostate. Knowledge of all the ni specifies a microstate—the exact
way that the energy is arranged among the modes. There are many
ways to do this (many microstates) that all give the same U (the same
macrostate). The notation is w(N,U) for the number of microstates
that give the same macrostate. This is also called the multiplicity. It
depends on the macrostate, which is specified by giving the number of
atoms N and the total energy U. It will turn out that in our to model and
in typical real systems, w is a very steeply increasing function of both
N and U. Those general properties are much more important than
exactly how it works out in our model.

For a very small system, with N=1, M=3, and U=2ε, we can easily list all
the possibilities for putting two identical things in three slots.



2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

The general formula for this toy model is
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w N,U( ) =
M −1+ n( )!
n! M −1( )!

  with M = 3N  and U = nε  .

The only important aspect of this formula is that it is a steeply rising
function of N and U or, equivalently, M and n.

Now consider thermal interaction between two such systems A and B.
Via heat flow, they can exchange energy and share a fixed total
amount of energy U = UA + UB . For a specific example, let’s do NA =1,
MA = 3 and NB =2, MB = 6. I will take them to be sharing nine units of
energy. So n = 9, and U = 9ε . We can then use the formula for w to
construct the following table.

nA nB wA wB wAB = wA wB

0 9 1 2002 2002
1 8 3 1287 3861
2 7 6 792 4752
3 6 10 462 4620
4 5 15 252 3780
5 4 21 126 2646
6 3 28 56 1568
7 2 36 21 756
8 1 45 6 270
9 0 55 1 55

The first two columns give the macrostates of A and B. The next two
columns give the multiplicity for those macrostates. Note that as the
energy increases or as the number of modes increases, the multiplicity



increases. The last column gives the multiplicity of the combined
system for the given sharing of the total energy. A given sharing of
the energy is called a macropartition of the energy. Each row is a
different macropartition of the total energy between the two systems.
The multiplicity for the combined system is relatively small when one
or the other has too much of the energy and has a peak in the middle
when the sharing is not too extreme.

So far, all of this is just counting. Where’s the physics? That comes
from the key input called the fundamental assumption:

Fundamental assumption (microcanonical distribution):
An isolated system is equally likely to be in any of its accessible
microstates.

From that, it follows immediately that the probability of a given
macropartition is proportional to the joint multiplicity, i.e.

P(UA,UB) ∝ wAB .



Let’s see what happens as we increase the system size and the
amount of energy. Here is NA=4, NB=5, n=30. (The Omega in the table
heading is the same as w.)

Now the multiplicities are much steeper and their product is more
sharply peaked. This trend continues for further increases of the N or
n.





Since the numbers increase so rapidly, it is more convenient to deal
with the natural log and thus with a function that is additive rather
then multiplicative when systems are combined. That is the entropy.
With w the number of microstates available to the system in a given
macrostate, the statistical mechanical definition of the entropy of
that macrostate is

S = k ln w or w = eS/k .

For our combined system with total energy UAB ,
SAB(UA) = k ln(wA wB) = SA(UA)+SB(UB) = SA(UA)+SB(UAB − UA)



For a system with a large number M of degrees of freedom and many
units ε of energy per degree of freedom U/(εM), the behavior of the

multiplicity above is 
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w =
U
εM
 

 
 

 

 
 
M

, which is typical of real systems. This

has the properties of growing rapidly with both U and M. For a pair of
such systems in thermal interaction and sharing a total energy U,
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wAB UA( ) = wA UA( )wB UAB −UA( ).
The first factor grows rapidly with UA while the second falls. The
product increases to a peak and then decreases.

General statements
For a combined system with two parts 1 and 2, the multiplicity is the
product w12 = w1w2 , and the entropy is S12 = S1 + S2 . If the two
systems are in interaction and have macroscopic quantities that are
free to vary such as U = U1 + U2 , a macropartition is specified by
giving the values of the macrovariables, e.g. U1 and U2 . Generally w12

and S12 are very strongly peaked functions of the macroscopic
variables that specify a macropartition.
Thus the probability of a macropartition is proportional to its
multiplicity P ∝ w = eS/k . The macropartition with the most



microstates is the most likely macropartition, and it is the one that
maximizes the entropy.

Since the maximum of this graph is the macropartition with the most
microstates, it is (by the fundamental assumption) the most likely
macropartition. If the system is away from the maximum as indicated
by the arrow, there will be more microstates if it moves to the right
toward the maximum. Thus the system will be most likely to move
toward the maximum and then stay near it. This is the approach to
thermal equilibrium. Thus the equilibrium division of energy (the
macropartition) is determined by finding the value of U1=UMAX at the
maximum of w12 .

For the combined system, S12(U1) = S1(U1) + S2(U2), and we find the
maximum via
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0 =
∂S12(U1)
∂U1

=
∂S1(U1)
∂U1

+
∂S2(U −U1)

∂U1

=
∂S1(U1)
∂U1

−
∂S2(U2)
∂U2

We can calculate the width of the peak by looking at the ratio of the
probability to be a little away from the peak to the probability to be at
the peak:
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P(U1 =UMAX + ΔU)
P(U1 =UMAX )

= e S12 U1=UMAX +ΔU( )−S12 U1=UMAX( )[ ] / k

For the particular form of w above, we can get S and do the calculation
of the exponent for small ΔU. The result is

U1

w12
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P(U1 =UMAX + ΔU)
P(U1 =UMAX )

= e
−M ( ΔU

UMAX
)2

For a macroscopic system, M is huge, so the peak is very narrow. This
result is valid beyond the model that we used to illustrate it. It is
essentially the Second Law. The overwhelming probability in a
macroscopic system with a huge number of degrees of freedom is to
move toward the macropartition that maximizes the entropy and then
stay very near it. In this process, entropy increases to its maximum.

Statistical mechanics definition of temperature
Applying these ideas to the case of two systems that can share
energy via heat transfer led to the conclusion that maximum entropy
and equilibrium comes when
∂S1 U1( )
∂U1

=
∂S2 U2( )
∂U2

When that is viewed in light of the thermodynamic relation for the
partial derivative of entropy with respect to energy, it motivates the
statistical mechanical definition of temperature
∂S
∂U

=
1
T

Entropy of an ideal gas
There are an infinite number of ways to get the entropy of an ideal gas
up to an overall constant from thermodynamic relations. To get the
overall constant, which we will not do, it is necessary to use a
microscopic quantum mechanical model. To get the entropy, we will
integrate dS from a reference point to the desired point. Since entropy
is a state function, each of the infinite number of paths to use for the
integration will give the same answer. Here is a way to do it by
integrating S(U,V) in the U,V plane.

We will use
∂S
∂U V

=
1
T

  and   ∂S
∂V U

=
P
T

  and   U = (f/2) nR T   and   PV = nR T



Recall that f is the number of degrees of freedom for a molecule of
the gas. For example, f = 3 for a monatomic gas or f = 5 for a
diatomic gas with translations and rotations but no vibrations. We can
rewrite the relation between U and T in the form (1/T) = (f/2) nR /U
and use that to replace T in the expression for dS.  Using the equation
of state, we can also replace (P/T) by nR/V. So
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dS =
∂S
∂U V

dU +
∂S
∂V U

dV =
1
T
dU +

P
T
dV =

f
2
nR dU

U
+ nR dV

V
The reference point will be an arbitrary point U0 , V0 in the U,V plane.
The integration path will have two straight-line legs. In the first, U0 → U
with V fixed at V0, and in the second, V0 → V with U fixed at U. Thus
for the first leg, only the first term in dS contributes, and in the
second leg, only the second term contributes. That gives
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S(U,V ) =
f
2
nR ln U

U0

+ nR ln V
V0

+ S0

The integration constant (the entropy at the reference point) is
independent of U and V. It can depend on n. However since the entropy
must be proportional to n, we can write S0 = nR ln(c), with c an
unknown numerical constant. Finally, combining all the logs together we
have
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S(U,V ) = nR ln c U
U0
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Equation of state and U(T,V) from S(U,V)

Suppose that we have the entropy as a function of U and V, S(U,V).
Then we can go backwards to get U(T,V) and the equation of state.
Consider
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∂S
∂U V

=
1
T  . The left hand side is a function of U and V and the right

hand side is just 1/T. This determines U as a function of T and V. If the
left hand side is simple enough, you may be able to explicitly solve for
U(T,V).
Also
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∂S
∂V U

=
P
T  . Again the left hand side is a function of U and V. This gives

P as a function of U, V, and T. Using the result for U, we can replace U
with U(T,V) to get P as a function of T and V, which is the equation of
state. For the ideal gas, this works out nicely. Try it.

Canonical distribution:

For a system in contact with a heat reservoir at temperature T, the
probability that the system will be in a specific microstate with energy
U is proportional to the Boltzmann factor

e
−
U
kT

This follows directly from the fundamental assumption and the
definition of temperature above: The probability for the combination of
the system and reservoir with total energy UT to be in a state in which
the system is in a single microstate with energy U is proportional to
the number of microstates of the reservoir when it has energy UT – U
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P(U)∝wR UT −U( ) = eSR UT −U( ) / k
.

But for small U
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SR UT −U( ) ≈ SR UT( ) −U ∂SR (U)
∂U U=UT

=SR UT( ) −U
T   .

So
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P(U) = P(0)e
−
U
kT

Conclusion
 “Some things just don’t happen.”


