
Information, entropy, and black holes
Entropy and the Second Law of thermodynamics arose from practical studies of engines
that were important to the industrial revolution. Similarly a quantitative theory of
information arose from practical studies of electronic communications in an information-
based economy as those became increasing important about 60 years ago. It is interesting
that there is a very close relationship between the quantitative descriptions of entropy and
information.

Information
Here is a very brief description of the quantitative definition of information. The
discussion is carried out relative to an ensemble of possible states or messages E.  The
qualitative idea is that if E has many states or many possible messages, then specifying a
particular state gives a lot of information. If there are only a few possibilities then
indicating one gives less information. In the limit of only one possible state, being told
what state the system is in gives no information at all because you already know.

How many bits does it take to indicate a particular state? For one state, zero bits, for two
states, one bit, for four states, two bits, and in general for 2N states, N bits. This motivates
the definition that the information in a message that is one out Q possible messages or in
a message that selects one of Q possible states is
     I = log2 Q
Evidently, this definition is closely related to the statistical mechanical definition of
entropy S = ln w.

How much information is in a message? If the message narrows the possibilities from
Q1 = 2N to Q2 = 2M , the information is the message is
     log2 Q1 − log2 Q2 = N − M.
The general communications setup is indicated in the diagram

This concept is used to analyze things like the information carrying capacity of
communication channels, the efficiency of encoding methods, etc. Lossy encoding (e.g.
JPEG and MP3) or the introduction of noise decrease the information in a message. Thus
while entropy increases, information decreases. Thus information is sometimes called
negentropy.
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Black hole information problem

Black hole basics
There is a formal analogy between the properties of a black hole and thermodynamics. A
black hole has a singularity at a point inside of it where the curvature of space becomes
infinite, i.e. the gravitational field is infinite. The interior region of the black hole is
separated from the exterior region by a spherical surface called the event horizon. Matter
and radiation can enter the black hole by crossing the event horizon from the outside to
the inside, but nothing can escape. Anything that crosses the horizon cannot avoid falling
into the singularity and being crushed there. For a black hole of mass M, the event
horizon has radius R ∝ M and area A ∝ R2 ∝ M2. The acceleration of gravity at the
horizon is GM/R2 ∝ 1/R. Since matter and energy can enter the black hole, but nothing
can leave, the mass M of the black hole always increases—at least classically.

No hair theorem
There is a famous and deep theorem that says black holes have no hair. What this means
is that a black hole is completely specified by its mass, charge, and angular momentum.
Since we are not going to be dealing with charge or angular momentum, we can over-
simplify a bit and say that all black holes of mass M are the same. There is no way to tell
from the outside what matter went into the black hole to form it or what subsequently fell
in. There is no structure (hair) on the surface (horizon) that is a trace of what went in. All
that detailed information is lost.

Thermodynamics
If a black hole were in thermal interaction with its environment, energy could flow into
the black hole but not out. Thus the black hole would act like it had zero temperature and
infinite heat capacity. There could be equilibrium at T=0 only. This seams unsatisfactory.
Fortunately, it is not the whole story. Recall that the specific heats of ideal gases and
black body radiation could not be properly described at the classical level. Quantum
mechanics came to the rescue. Here too it is crucial.

Suppose that in a quantum fluctuation, a pair of particles is created just outside the
horizon. As viewed by an observer far from the black hole, these particles have negative
potential energy. Give one of the particles enough kinetic energy to make the total energy
of the pair zero. Now the particle without the kinetic energy can fall into the black hole
while the other particle escapes to infinity. When the negative energy particle goes into
the black hole the black hole mass decreases and a particle is radiated away while total
energy is conserved. This radiation was first described by Hawking and Bekenstein. A
detailed and complicated calculation reveals that the radiation has the spectrum of a body
at temperature T ∝ 1/M. This is amazing. Now it is not too far fetched to speculate that
there is the following dictionary for the analogy:
U ⇔ M
T ⇔ 1/R ∝ 1/M
S ⇔ A ∝ R2 ∝ M2

dS/dU = 1/T ⇔ dM2/dM ∝ M ∝ 1/T



Thus the black hole acts like it has a temperature T ∝ 1/M. It radiates energy and thus
mass and eventually disappears. We learned that the rate of radiation is proportional to
T4 ∝ 1/M4. So this is initially very slow but speeds up at the end just before the black hole
disappears in a flash. As this happens, the mass of the black hole and thus its entropy are
decreasing. However, since there is compensating entropy in the radiation, this does not
violate the Second Law.

For systems that we have studied, the entropy is proportional to the volume of the system
in the sense that if we have, for example, a box of gas with entropy S and then we double
the volume of the box and double the number of particles, the entropy doubles to 2S.
Notice however, the very curious aspect of the black hole entropy that it is proportional to
the surface area of the black hole not to its volume.

In our discussions of entropy, we began with a somewhat abstract thermodynamic
approach but then gave a more intuitive account in terms of statistical mechanics and
counting states. It remains an open question how to get the black hole entropy from a
statistical mechanical counting of states. Some believe that string theory may provide an
answer, but it’s not there yet.

Information loss?
There is a long-standing, unresolved question about black holes and information. There
are many ways to state it. Here is one. At the end of the quarter, all the physics students
in the universe toss their physics books into the same pile. Although you may have some
doubts, these books contain a lot of information and are in a state of low entropy. If there
are enough books, they will collapse into a black hole. Considering the no hair theorem, it
appears that the information has been lost. Worse, the black hole will eventually
disappear leaving behind a lot of thermal radiation and (apparently) very little
information. Thus one begins in a single zero temperature state (the pile of books) with
lots of information and no entropy and ends in a state (the radiation) with non-zero
temperature and lots of entropy. Ordinary quantum mechanics does not provide a
mechanism for such a transformation. Is quantum mechanics wrong or at least
incomplete? Is the final state not really high entropy but actually has all the physics from
the books some how encoded in it? This remains an open question. Even those who are
adamant that the information is preserved have not been able to present a convincing
mechanism by which that happens.


