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General Relativity & Cosmology
It might be said that special relativity begins with Einstein’s deceptively simple
postulate that the speed of light is the same in all frames. General relativity, a more
general theory, begins with another of Einstein’s ‘simple’ postulates--that ‘inertial
mass’ and ‘gravitational mass’ are the same. In introductory physics we learn
Newton’s universal law of gravitation: The force between objects of mass m and M
separated by r is F = G M m

r2  , where G is the universal gravitational constant. Taking
m to be an object near the earth’s surface, with M and r being the earth’s mass and
radius, the force on m is:

Fgrav = 
G Mearth
rearth2  m  ≅  9.8m/s2 × m (1a)

In introductory mechanics we also learn the second law of motion: that the
acceleration of an object of mass m is proportional to the net force on the object and
inversely proportional to m.

a = Fnet 
1
m (2a)

On the face of it, these two properties of the mass m are entirely different. There
is no fundamental reason that the property governing how hard gravity pulls on a
given object should have anything to do with the property governing its reluctance to
accelerate when a net force is applied! (After all, the net force might be purely
electrostatic, unrelated to gravity.) Accordingly, it might be safer to use an mg in the
first equation, signifying a gravitational property, and an mi in the second, signifying
an inertial property.

Fgrav = 9.8m/s2 × mg (1b) a = Fnet 
1
mi

(2b)

Now consider what happens when an object is dropped from shoulder height. In
this case the net force is simply the gravitational force. Thus,

a = ( )9.8m/s2 × mg  
1
mi

  = 9.8m/s2 
mg
mi

Were mg and mi truly different properties, there is no reason why we could not have
an Object 1 with mi = 1.1 mg and an Object 2 with mi = 0.9 mg, in which case they
would accelerate at different rates. This is certainly not what we expect. In fact, the
equivalence of mg and mi has been experimentally verified to better than one part in
1012. It is natural to assume that the properties are the same. But with the
unthinking assumption comes a certain blindness.

Albert Einstein was the first to discover the startling possibilities that arise by
postulating that mg and mi are the same. In particular, if mg = mi , it would be
impossible to determine whether one is an inertial frame permeated by a uniform
gravitational field, or in a frame in which there is no field, but which accelerates at a
constant rate. Suppose Bob stands in a closet on earth, Frame B. He is in a frame of
reference that is inertial and in which there is a uniform gravitational field of
g = 9.8m/s2 downward.1 Anna is in an identical closet, Frame A, but one that is out
in space, far from any gravitational fields. By means of a rocket engine, Anna’s
closet is accelerating in a straight line at 9.8m/s2. For Bob to remain stationary, the

1 Actually, the earth revolves, so the frame does accelerate, and the field is not exactly uniform, since all field lines point
toward the earth’s center and so are not exactly parallel. But it is inertial and of a uniform field to a reasonably good
approximation.
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floor must push upward on his feet with a force whose
magnitude is equal to the downward force, mg× 9.8m/s2. For
Anna to accelerate along with her rocket-powered closet, the
floor must push ‘upward’ on her feet with a force sufficient to
give her an acceleration of 9.8m/s2. By the second law of
motion, this force is mi × 9.8m/s2. Now, if mg and mi are equal,
the forces in the two frames would be equal, and would provide
no clue to distinguish whether an observer is in Frame A or
Frame B. The normal force is only the simplest example of
something one might use; the fact is that no mechanical
experiment would be able to distinguish the frames. In the

a = g

FN = mi a = mi g
mg g

FN = mg g

Frame B Frame A

g

linearly accelerating Frame A, all things appear to be affected by
a downward force just as they are in Frame B: the floor must
push ‘up’ on objects; ‘dropped’ objects to appear to accelerate
downward (because, once let go, they do not accelerate along with
the frame). All these effects could be attributed to a fictitious
‘inertial force’ -mi a opposite the direction of acceleration.
Provided that mi equals mg, this force would mimic a
gravitational force mg g in all respects.

mi g FN

a = g

mg g
FN

g

mi gmg g

Frame B Frame A
By the same token, no mechanical experiment would be able

to distinguish a frame that is accelerating in ‘free-fall’ in a
uniform gravitational field from one that is inertial and without a
gravitational field. An observer in the inertial frame would see all
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objects floating or moving at constant velocity, because no forces
act. An observer in the free-falling frame would also see objects
seemingly moving at constant velocity (though all would actually
be accelerating with the frame), because the gravitational force
mg g is exactly canceled by the ‘inertial force’ - mi a.

Einstein’s customary leap forward was to postulate that all
physical phenomena, not just mechanical ones, occur identically
in a frame accelerating in gravitational free-fall as in an inertial
frame without gravity. No experiment could distinguish the
frames. Accordingly, he generalized the concept of an inertial
frame by defining a ‘locally inertial frame’: a frame that is falling
freely in a gravitational field (which includes ordinary inertial
frames--no gravity, no acceleration--as a special case.)2 With this
definition, Einstein’s fundamental postulate of general relativity,
known as the Principle of Equivalence, is:

Principle of
Equivalence

The form of each physical law is the
same in all locally inertial frames

This postulate is only the basis of general relativity. Just as the Lorentz
transformation equations follow from the postulates of special relativity, a
mathematical framework follows from this postulate. Unfortunately, general
relativity theory is too sophisticated to discuss quantitatively here (it involves the
mathematics of tensors and differential geometry). Nevertheless, some of its
astonishing predictions can be understood qualitatively just from the Principle of
Equivalence. Three have attracted particular attention: (1) gravitational red-shift;
(2)   the deflection of light by the sun; and (3) the precession of the perihelion of
Mercury.

2  The acceleration of freely falling objects in a frame would not be the same unique value unless the gravitational field is
uniform. Therefore, the frame must also be small enough that any non-uniformities in the field within it are negligible.
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Gravitational Red-Shift
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Figure 1.1

According to the equivalence principle, light emitted at one point
in a gravitational field will have a different frequency if
observed at a different point. We see this by analyzing not a
fixed light source and observer in a gravitational field g, but the
equivalent case of a source and observer in a frame accelerating
at g (without gravity). In figure 1.1(a), a source in an
accelerating frame emits a wavefront when the frame has zero
speed. An observer a distance H ‘above’ the source observes
the wavefront after a time H/c . But by this time the observer is
moving ‘upward’ at speed v = g H/c. Thus, the light was emitted
in a frame that moves at velocity g H/c away from the frame in
which the light is observed. According to the observer, the light
will be red-shifted. The observed period will be longer than the
source period by the factor 1  +  v/c = 1  +  g H/c2 .3

Tobs = ( )1  +  g H/c2  Tsource

Inverting to obtain frequencies,

fobs =  ( )1  +  g H/c2 -1 fsource ≅ ( )1 - g H/c2  fsource

The observed frequency is lower by the factor g H/c2 . The
fractional change in frequency is given by:

 
∆f

fsource
  ≡ 

| |  fobs - fsource
fsource

 = 
g H
c2

Since a gravity-free frame accelerating at g is equivalent to a fixed frame in a
gravitational field g, the same conclusion must apply to the latter case, figure 1.1(b).
Thus, as light moves upward, its frequency becomes smaller and its wavelength
longer. Two interesting conclusions follow. First: This is a time dilation effect, but it
has nothing to do with being in different reference frames. In figure 1.1(b) there is
no relative motion between source and observer. Assuming light of frequency
5×1014Hz (600nm), as one second passes at the source, 5×1014  wavefronts are
emitted. It might be said that 5×1014  distinct events in the life of the source pass.
But in a given second, the observer receives fewer wavefronts, because he observes a
smaller frequency. To witness all 5×1014  events in the life of the source, the
observer has to wait more than one second. Relative to the observer, the source,
‘deeper’ in the gravitational field, is aging slowly.

Figure 1.2

Does time really pass more slowly on the surface of the earth than at some
altitude above? The weakness of most gravitational fields (g H/c2  << 1) had long
made verification of gravitational time dilation difficult. But modern ‘atomic’ clocks
of extremely high precision have changed this. Atomic clocks use as their basic unit
of time the very short period of certain atomic oscillations. By comparing the
frequency of such a clock on the surface to that of one aboard a high-altitude rocket,
strong confirmation of Einstein’s equivalence principle has been obtained.4

3 This is a ‘lowest-order’ result, correct only when the acceleration and distance traveled are small.
4 Nevertheless, a philosophical question remains: Is time really passing slower on the surface, or is it just that gravity
interferes with the behavior of light sources, clocks, etc.? In introductory physics we learn that time is based upon an accepted
standard unit. Today we define time in terms of the period of apparently regular oscillations of cesium-133 atoms. There does
seem to be a predictable relationship between this unit of time and the rate of all other microscopic physical processes, such
as those that govern the affairs of the human body. If all processes occur at a slower rate on the surface than at altitude, as it
appears that they do, it certainly seems reasonable to say that time passes more slowly at the surface. Of course, if we cannot
equate ‘real’ time with the rate at which physical processes occur, the question remains unanswered.
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Before we discuss the second conclusion, let us venture a
little further with the present train of thought: If a gravitational
field somehow ‘warps’ time intervals, even when there is no
relative motion, why not space intervals? Indeed, one of the
tenets of general relativity is that a massive heavenly body
warps space-time nearby. Representing warped space-time in
three dimensions is difficult. It is easier in two dimensions, in
which space is area. Figure 1.3 shows a massive heavenly
body disturbing the regularity of a two-dimensional space.
Inhabitants of this two dimensional universe expect all ‘cells’
to be of equal area. We ‘outside observers’, however, can see
that the cells near the heavenly body are really larger--but
only from our ‘extra-dimensional’ viewpoint. Similarly, the
warpage of real three-dimensional space is not apparent to

warped
space-time

heavenly
body

Figure 1.3

human beings; we are creatures of our space of three dimensions, and are not able to
stand back and view our universe on four-dimensional axes. Nevertheless, even
‘reduced-dimensional’ views such as figure 1.3 help to provide a qualitative
understanding of some features of general relativity, as we will soon see.

The second conclusion arising from the gravitational red-shift is that gravity has
an effect on light! Now light has no mass--its energy is all kinetic--so it must be that
gravity pulls on forms of energy besides mass (or internal) energy. As it moves
away, the light’s kinetic energy must decrease as potential energy increases. But this
leads to the question: How can the universal law of gravitation F = G M m

r2   be used to
account for the effect of gravity on light without an m for light? The answer is that
Newton’s ‘universal law’ is really a special case, correct only when the gravitational
field is very weak-- the so-called ‘classical limit’.5 In this limit, the effect on light is
negligible and there is no need to consider an m. For a strong field, however, general
relativity comes into play and Newton’s law is replaced by a different view--warped
space-time. Near a massive heavenly body, the regularity in space and time intervals
is disturbed. Light ‘naturally’ changes frequency as it passes through.

Most heavenly bodies produce only a very small gravitational red-shift. They are
not dense enough to warp nearby space-time significantly. The gravitational red-
shift of our sun is only about two parts in 106. (The earth’s is much smaller still.) It
has been measured, though, and agrees quite well with what Einstein’s principle of
equivalence predicts. On the other hand, it is theoretically possible for an object to
be so dense that light simply could not escape its gravitational potential energy at all.
We discuss such objects, known as ‘black holes’, later in the section.

5 Newton’s law of gravitation F = G 
m1 m2

r2  bears somewhat the same relationship to General Relativity theory that

Coulomb’s Law F = 1
4πεo

 
q1 q2

r2
  does to Maxwell’s equations. Coulomb’s law is a special case, correct only for static

electric fields. An understanding of electromagnetic waves must come from Maxwell’s equations. Similarly, gravitational
waves, one of the predictions of General Relativity, cannot be analyzed via Newton’s static law. Great efforts are now being
made to detect gravitational waves. We expect that the accelerations of certain immense heavenly bodies send gravitational
waves out into space. But they are hard to detect. The difficulty is in sorting out their small effect from the ‘noise’ inherent in
earth-bound experiments.
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We have seen that gravity ‘pulls’
on light moving directly away
from a heavenly body. But what
if the light is traveling laterally--
does it curve? It must! Since a
laterally-moving light beam
would appear to curve toward the
floor in Anna’s rocket-powered
closet, it must curve toward the
floor in Bob’s earth-bound
closet.

Again, however, we need not
attempt to reconcile light’s
curvature with Newton’s law of
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Figure 1.5

gravitation; rather, the light simply moves in the most
natural way given the warped space through which it travels.
A guiding ‘classical’ principle applies even in warped
space-time: light always takes the minimum time to travel
from one point to another. If we combine this with the idea
of warped space-time, it becomes clear why light should
‘bend’ near massive heavenly bodies. Figure 1.5 shows
two possible paths of a light beam originating at one point
in space, passing through the warped space-time near a
large heavenly body, then observed at another point. The
darker path follows what inhabitants of the flat, two
dimensional space might believe is a straight line, one of the
lines in a ‘grid’ that would be regular if space were not
warped. Smugly observing from our greater-dimensional
perspective, however, we see that this path is rather long.
The other path, though appearing not to follow a straight
line from the ‘flat perspective’, is actually shorter. Since
this path is the one that the light actually takes, an observer with a ‘flat perspective’
sees a beam that curved as it passed near the heavenly body and thus seems to have
originated at some other point in space.

As noted, our sun does not warp space much. To have any hope of detecting
measurable deflection of light by our sun, observations have to be made of light rays
passing very close to it, where its field is strongest. This light of course comes from
other stars. Their positions should appear to shift slightly as the sun passes between
them and earth. The problem is that the stars would ordinarily be completely
obscured by the brightness of the sun. Therefore, such observations have to be
made when the sun is ‘darkened’--during a solar eclipse. One of the first, during an
eclipse in 1919, showed a deflection of about 2 seconds of arc for light barely
grazing the sun. As in the case of gravitational red-shift, agreement with the
prediction of general relativity is very good.6

6 The warpage of space caused by an immense mass allows for multiple shortest distances between two points. Light from a
star may curve around opposite sides of an intervening massive object, producing a double-image at earth. Astronomers have
indeed observed large galaxy clusters that produce this effect. They are referred to as ‘gravitational lenses’.
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Precession of the Perihelion of Mercury
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The orbits of the planets about the sun are not exactly circular, but
slightly elliptical. At one point in its orbit, called aphelion, a planet will
be slightly farther than average from the sun, and at another, called
perihelion, slightly closer. So long as a system is simply one object
orbiting another, it is a direct prediction of classical Newtonian
gravitation that the same path in space is retraced indefinitely. But if
anything interferes with the simple interaction, the orbit will precess;
the points of aphelion and perihelion progressively ‘creep’ around in
a circular fashion. One source of interference is the presence of other
heavenly bodies. The slightly elliptical orbit of Mercury, for instance,
precesses due to the perturbing effects of the other planets. Now
Newtonian theory can account for these effects, predicting a rate at which precession
should occur. But, much to the consternation of early astronomers, the predicted rate
did not agree precisely with observation. The problem was that Newton’s law of
gravitation is correct only for a weak gravitational field. A strong field might well
cause observation to deviate from the ‘classical’ expectation. If any planet shows
deviation, it should be Mercury, for it orbits where the sun’s field is strongest.
Using general relativity, a correction to the classically expected precession rate of
Mercury may be calculated. The result of 43 seconds of arc per century is in good
agreement with observation.

We have seen how successful general relativity has been in explaining some
slight discrepancies between classical expectation of actual observation. Though this
evidence took decades to accumulate, its weight was irresistible, leading to near-
universal acceptance of Einstein’s ‘new’ approach to gravitation. Let us now
explore an important topic in which general relativity plays a significant role.

Cosmology
Cosmology is the study of the behaviors of heavenly bodies, both individually and
collectively. The topic is invariably coupled to gravitation, because gravitation is the
only fundamental force in nature that is both long-range and only attractive. Thus, it
is by far the most important force in the evolution of and interaction between huge
heavenly bodies.7 Much of cosmology can be understood via classical Newtonian
gravitation, but certain behaviors require general relativity.

Stellar collapse is the term describing the fate of individual stars. The energy
source of stars is nuclear fusion. Early in the ‘life’ of a star, the enormous
gravitational attraction of its mass is balanced by the constant generation of energy,
which would tend to scatter the material--a constant size is maintained. When a
star’s fuel begins to ‘burn out’, the gravitational attraction predominates and
gravitational collapse begins. If the star is not much more massive than our sun, the
final result is a white dwarf, and ultimately a cold, dead chuck of matter typically
no larger than the earth! For stars several times the sun’s mass, the extra
gravitational pressure is able to force protons and electrons to combine, forming
neutrons and tiny particles known as neutrinos. The neutrinos carry away a huge
amount of energy in a cataclysmic explosion known as a supernova. What remains
is a cold neutron star of fantastic density--a typical radius is only tens of
kilometers. The density of a star collapsed so small would be roughly 1017kg/m3,
approximately equal to that of the atomic nucleus, 1014 times that of lead! For even
larger stars there is a third possible fate--becoming a black hole, and here is where
general relativity comes into play.

7 Large objects tend to be electrically neutral, and so do not exert significant electrostatic forces on one another. The other
fundamental forces (the “weak” and the “strong”) are significant only for microscopic particles at very close range, typically
10-15m and less.
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One of the most startling features of the theory of general relativity is the
possibility of singularities in space.8 A black hole would be such a singularity. A
singularity would occur if a body of mass M becomes so compact that its radius
drops below the so-called Schwartzchild radius: rS = 2 G M

c2  . (Assuming that the
critical radius depends only on the mass of the body and the fundamental constants
G and c, simple dimensional analysis yields this equation to within a multiplicative
constant.) The singularity would be separate from the universe as we know it. It
would simply be a silent ‘hole’ in space. Moreover, its gravitational field would be
so strong that not even light could leave it, thus the name ‘black hole’. Its presence
would be betrayed only by its warpage of space, i.e. its external gravitational field,
and its ability to gobble up things from the outside. A black hole would be
uncharted territory, not on the map, and an unlucky passerby would be in for quite a
ride. It should be noted that not even the atomic nucleus--trillions of times denser
than the densest of ordinary materials--comes close to qualifying as a black hole.
The diameter of a typical nucleus is 10-15m, but its Schwartzchild radius would be
roughly 10-52m. Only under conditions such as the tremendous gravitational
pressure in immense heavenly bodies might a black hole occur. Since black holes
would be light-years away and dark, with gravitational effects serving as our only
clues, we expect them to be difficult to detect. Though there are several candidates,
there is as yet no conclusive proof of their existence.

The Evolution of the Universe
The most apparent change in the universe as a whole is that it is expanding.
Furthermore, the way in which it is expanding suggests that it began with a ‘bang’,
from the explosion of an initial, supremely compact body of energy. Let us view the
universe as consisting of galaxies, each galaxy being a distinct frame of reference.9
If all galaxies began moving away from the origin at the same time, after an arbitrary
time they would be spread out according to their speeds; speed should increase
linearly with distance from the origin. After one unit of time, those moving a unit
distance per time would be one unit away, those moving two units of distance per
time would be two units away, and so forth. Perhaps surprisingly, this would also
appear to be the case no matter which frame-of-reference / galaxy an observer
happened to occupy. Thus, if the universe did begin with a ‘big bang’, any galaxy
(including our own, of course) should serve as a valid base from which to observe,
and the speeds of the galaxies should increase linearly with their distances from that
frame of reference.

8 Mathematically, a ‘singularity’ is a point at which a discontinuity or divergence occurs.
9 The reason for this arbitrary choice is that galaxies are the smallest units that move more or less independently. Stars
within a given galaxy definitely do not. Our sun, for instance, orbits about the center of its galaxy, the Milky Way.
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This is just what we observe! This evidence comes from the Doppler shifts in
the light spectra from distant galaxies; the farther a galaxy is from earth, the greater
is the red-shift in its spectrum, which implies a greater recessional speed. We find
that the speed increases linearly with distance:

v = Ho r

This relationship is known as Hubble’s Law, and the constant Ho as Hubble’s
constant. Since on object moving a distance r at constant speed v would travel for a
time r/v , and this is the same constant 1/Ho

 for all galaxies, 1/Ho
 is often referred to

as ‘the age of the universe’. Modern doppler evidence gives a value of
approximately 2×10-18s-1 for Ho, or an age of the universe on the order of ten
billion years. Unfortunately, Hubble’s constant is not known with great precision,
mostly because it is difficult to be certain of the distances r to faraway galaxies.

Even if distances could be known precisely, a guess at the age of the universe
based on Hubble’s constant is approximate at best. Among the problems is that
galaxies have really not moved out independently at constant velocity since an initial
‘big bang’. All forms of energy in the universe share a gravitational attraction,
which necessarily decreases the expansion rate. Indeed, one of the most compelling
questions in cosmology is whether this gravitational attraction is sufficient to cause
the universe at some time in the future to stop expanding and then reconverge. The
answer hinges on the energy density in the universe. General relativity predicts a
critical density ρc. If the actual density ρ is less than ρc , the universe will expand
forever; if greater, it will eventually reconverge. The big question is: How does ρ
compare to ρc? Unfortunately, the energy density in the universe is not known well
enough to answer the question. One of the most important factors is the amount of
‘dark matter’. It is fairly easy to estimate the energy density of things we can see
(i.e. stars), and this suggests that ρ <  ρc . But there is much out there that we cannot
see. This dark matter may take several forms: intergalactic dust, collapsed galaxies,
black holes, background neutrinos, or unknown particles or radiation. The density
of neutrinos in space is difficult to determine, but of particular interest. Though once
thought to be massless (like light), recent experiments indicate that neutrinos do
have a small mass, and this may greatly affect the value of ρ. Much research has to
be done before we can say whether the universe will or will not expand forever.


