
Gravity and geometry

Why is it that gravity can be described as a geometrical property of
spacetime? Consider the trajectories of different particles in a gravitational
field. Since the gravitational force is proportional to the inertial mass of an
object (the Principle of Equivalence), all particles experience the same
acceleration at the same position. Thus, if they begin at the same place
and with the same initial velocity, Newton’s Second Law says that they will
follow the same trajectory. In other words, the trajectory of the particle
does not depend on properties of the particle such as its mass or charge. In
that sense, the trajectories are properties of the field and not properties
of the particle. But then why think of the gravitational field as separate
from the properties of spacetime itself. If all particles behave the same
way, there is no way to separate the effects of gravity from the
structure of spacetime. That tells us that a geometrical theory of gravity
could work and that it is not futile to try it. It does not prove that it must
work nor does it tell us how to go about formulating a theory. It was
Einstein who told us how to do it. (In my view, the geometrization of
gravity in his General Theory of Relativity is a much greater intellectual
achievement than was Special Relativity. It was a greater leap from the
conventional views of the age.)

The basic idea is that gravitational effects are replaced by the curvature of
spacetime. There is no more gravitational force and no more gravitational
field. But since Newton’s theory of gravity works very well in most regions
easily accessible to us, there must be some limit in which General Relativity
reduces to Newtonian theory with a gravitational field. In a flat space,
parallel lines stay parallel—they never cross. In the absence of forces, the
trajectories of particles are straight lines, that never cross if they start
out with parallel velocity vectors. However, when there is gravity (and, in
fact, there is always gravity) particles that start out parallel, will approach
each other as time increases. That effect becomes a consequence of the
curvature of spacetime in General Relativity. A simple example is the
surface of a sphere. Lines that begin parallel and heading north at the
equator get closer together as they move farther north. The curvature of
spacetime reproduces the effects that we have been attributing to a
gravitational interaction.
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So the motion of particles is controlled by the curvature of spacetime.
But, where does the curvature of spacetime come from? It comes from
the presence of matter! Matter curves spacetime, and then the motion of
other matter is affected by that curvature. That’s what gravity is.

So our problem is to set up the mathematical machinery that is needed to
describe the curvature of spacetime. Unfortunately, this is a rather
involved and elaborate business. It takes way more time than we can
spend on it. ‘Too bad. You can begin to see what the difficulties are by just
thinking about the surface of a sphere. It is a two-dimensional surface with
constant curvature and a great deal of symmetry. Except for the plane,
you could not ask for something simpler. Nevertheless there is no way to
put coordinates on the sphere that reflect its nice properties. In fact, there
is no way to put global coordinates on the sphere without introducing
some kind of a singularity. The usual way to describe position on a sphere is
the polar angle θ and the azimuthal angle ϕ. They have bad behavior at the
poles (ϕ is undetermined), and you will keep yourself busy for a long time
trying to express a nice, simple great circle that does not go through the
poles in these coordinates. Thus, we will have to be content with a very
rough an qualitative discussion of how all this works and leave the real work
for another course.

The basic idea is that the geometry of spacetime is encoded in the metric.
We have seen the metric of flat Minkowski space appears in the expression
for the spacetime interval

ds 2 = gµν dx µ dxν  .

(Remember that we are using the Einstein summation convention here.) In
this discussion, I will use a different symbol ηµν for the special metric of flat
Minkowski spacetime and use gµν for the general case. So the expression
above is how the infinitesimal spacetime interval is written in the general
case of a curved spacetime. The metric gµν might be a really complicated
function of the position coordinates xµ. In Minkowski spacetime, the metric
becomes the simple version that we have already used gµν→ηµν with

η µν =

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1
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There are two topics to deal with. One is the way that a particle moves in a
given geometry with a given metric. Two is how the distribution of matter
determines the metric. Let’s talk about the first one first. We have already
seen that in flat space, the spacetime interval between two events is
obtained from the path that has the maximum proper time connecting
the two events. We have also seen that it is the path with constant
velocity. Thus it is also the path that a free particle follows. A particle
traveling between two events follows the path that maximizes its proper
time. The correct generalization to curved spacetime is that the previous
statement is still true. But then the path is no longer one of constant
velocity. Let’s try to figure out what this means. Suppose that the metric
is independent of the time coordinate t. If the particle is at rest at some
position, we have dxi=0 (I=1,2,3) and

dτ = g00dt 2 = g00 dt   .

This says that proper time will run faster relative to coordinate time where
g00 is larger. That will be preferred in the trajectory of the particle. On the
other hand, we have already seen that adding a “unnecessary” velocity
reduces the elapsed proper time relative to the path that uses lower
velocity to get the job done. Thus there is a balance: the particle would like
to get to a region with larger g00 to get its proper time moving faster, but
to get there, it needs to add velocity which has the cost of slowing the
proper time. For the static case, the metric can always be put in the form

gµν =

g00 0 0 0

0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33
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The spatial parts gij  i,j=1,2,3 are basically negative numbers as the form of
the flat space Minkowski metric suggests they should be for the
conventions that we have chosen. Then the form of the proper time is

dτ = g00 + gij viv j dt

with the second term in the radical making a negative contribution. This
decreases the rate of change of the proper time when the velocity is not
zero. A balance must be struck. And that balance determines the actual
trajectory. The mathematics that is used is called the calculus of
variations. It allows one to convert the condition that the path must
maximize the proper time into a differential equation that the path must
satisfy. You have already seen the form of this differential equation that
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applies to the case of low speed motion with forces that are not too large.
It is Newton’s Second Law!

Let’s reiterate the main point of this: The principle that the particle
chooses the path with the largest proper time means that it must strike a
balance between moving to regions with larger goo and increasing its
velocity in order to get there.

The second issue is to consider how the geometry of spacetime, as
reflected in the metric, is determined. Here we get at big hint from the
gravitational red shift. It follows from the Principle of Equivalence and
shows that when the rates of clocks at different gravitational potentials
are compared, the clocks lower in the potential run slower. What does this
tell us about the metric? The metric is exactly the thing that gives the
relationship between clock rates and coordinate time. Consider the
situation in which there is a spherically symmetric mass at rest at the origin
and we are investigating the effect that it has on space outside if it. Lets
restrict ourselves to dealing with just one of the spatial coordinates:
distance from the origin r. Since the mass is not moving, we can hope for a
geometry that is static and for a metric that does not depend on time.
Now consider two light pulses that leave the lower clock separated by a
small time dt. The trajectory that they follow is determined by the metric
through the condition ds=0 along the path. Since the metric does not
depend on time, the two paths are the same except that the second is
shifted up the time axis by a uniform dt relative to the first. Thus, the
separation of the times at which they arrive at a larger r is also dt.

Now consider something physical: proper time or clock rates. At fixed r, so
that dr=0, ds=√[g00(r)]dt. Comparing the rates of clocks at r0  and r gives

ds(r)
ds(r0 )

=
g00 r( )
g00 r0( )
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On the other hand, the gravitational red shift tells us that this ratio is
ds(r)

ds(r0 )
= 1 + 1

c2
g r − r0( )

(The g in the equation above is the local acceleration of gravity not the
metric.) Note that the combination g(r-r0) is just the gravitational
potential difference between r and r0. With that we can rewrite it as

ds(r)
ds(r0 )

= 1 + 1

c2
[V (r) − V (r0 )]
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For ordinary circumstance, this is very close to one. Thus, we expect that
the metric g is close to the Minkowski form η, and we write g=η+h with h
small. In particular, g00=1+h00. When this is substituted above and the
expression is expanded to first order in h, we find

ds(r)
ds(r0 )

= 1 + 1
2

[h00 (r) − h00 (r0 )]  .

Comparing the last two expressions for the proper time ratio, we conclude
that

h00 = 2

c2
V r( )    or     g00 = 1 + 2

c2
V r( )   .

Now we really have something. This gives us some idea about how the
presence of the mass affects the curvature of spacetime and gives a
metric that depends on position and is not the Minkowski metric.

So the space is curved, so what? What does that have to do with what we
usually think of as the effect of the gravitational force on the motion of
particles? We have already discussed this. A particle moves between two
given events in such a way as to maximize the proper time for the trip.
Suppose it is to go from r0  at t=t1  back to r0  at t=t2. Of course, we know
from our previous experience what it really does. If there are no other
masses around, the particle just sits there and waits out the time t2-t1. If
it is here near the earth, to get it to return to your hand after a time t2-t1,
you need to toss it straight up just the right amount. We can reproduce
this result with the requirement that particle maximize the proper time. If
there are no masses around, the metric is the flat Minkowski ηµν. That has
already been discussed: the path with maximum proper time is the path
with constant velocity. In this case, where it starts from and returns to
the same point, that means zero velocity. In the case with a nearby mass
and a different metric, there is the balance between the desire to get to
regions with larger g00 and the desire to keep the velocity low. Thus it goes
up a bit to get to larger V and g00 but not so high that the increase in
velocity is too big. That’s just another way of saying it goes up a ways and
then comes down. It appears that we might be on the right track.

It’s nice to reproduce things we already know, but it’s nicer to predict
something new. Einstein gave us the differential equations that determine
the metric from a given distribution of mass. They are quite complicated
and not yet fully understood. The reason they are complicated as that in a
certain rough sense the gravitational field serves as a source for itself. So
far, we have seen that mass changes the metric. Also we know that mass
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is just a form of energy, and that mass can be transformed to other
forms of energy. Thus, it could not be consistent for it to really be mass
that determines the metric, it must be energy. For slowly moving massive
objects, most of the energy is in rest mass, and we easily miss the
contribution from the kinetic energy. Speaking very roughly, the distortion
of space that is caused by the presence of energy contains energy itself.
Thus the curvature of spacetime becomes the cause of further curvature,
and the equations become very nonlinear.

There are a few cases where relatively simple, exact solutions have been
found. One of them is the problem at hand: a static, spherically mass. The
result for radial motion outside a mass M is

ds 2 = 1 − 2GM

c 2r

 
  

 
  dt2 − 1

1 − 2GM

c2 r

dr 2

c2
   .

This is called the Schwarzschild solution. Notice that something odd is
happening at

r = rS ≡ 2GM

c 2

which is called the Schwarzschild radius. In spite of the relative simplicity of
this metric, it is still quite complicated to figure out what is really happening
at rS. For example, note that outside rS , t is a timelike coordinate (dt2

makes a positive contribution to ds2) and r is a spacelike coordinate (dr2

makes a negative contribution to ds2) while inside rS the roles are reversed.
It turns out that what we have here is a black hole. Massive particles and
light rays that cross from r>rS to r<rS can never return to the region
outside rS. The fall from r>rS to r=0 happens in finite proper time for the
particle. However, for an observer at some fixed r>rS, watching the
process, the fall to  rS of the particle takes infinite time.

There is now quite a bit of observational evidence that black holes exist.
They come in two basic forms. There are those that form at the end of
the life of a massive star. Eventually it burns up all its nuclear fuel, and there
is nothing left to resist the gravitational collapse al the way to a black hole.
The other type is supermassive black holes at the centers of galaxies. If
fact there is probably one at the center of our Milky Way. In either case,
matter falling into the black hole is heated and it radiates and we can
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detect the radiation emitted before it crosses into the region  r<rS. Also
the curvature of space around the black hole effects the orbits of nearby
objects in ways that we can observe and deduce that they are probably
caused by a black hole.


