
More cosmology

This is a summary of the results from the discussion in lecture about the evolution of the
universe.
• Scale factor for the universe: R(t). Physical separations are proportional to R.

• Notation: ˙ R ≡ dR
dt

• Hubble parameter: H ≡ ˙ R / R
• Hubble expansion: v=Hd
• Energy density: ρ

• radiation dominated: ρ ∝ R −4

• matter dominated: ρ ∝ R −3

• curvature dominated: ρ  is negligible relative to k/R-2.
• vacuum or cosmological constant dominated: ρ  is constant.

• Friedmann equation (solve to get evolution R(t)):

H 2 − 8πG
3

ρ = − k

R2

This equation describes physics that is analogous to the problem
of throwing an object away from the surface of the earth. The
conservation of energy determines the outcome. The results for
R(t) below are not big mysteries. They come right out of this equation,
and the basic physics can be understood by comparing with the analogous
problem just mentioned.

• k=+1, 0, -1
• Present value of the Hubble parameter: H0=h0/(9.78x109years)

h0=0.7±0.1

• Critical density: ρc = 3H 2

8πG
• Present value: ρc0 =1.05h0

210 4 eV / cm3

• At early times (less than about 100,000 years), the radiation
density dominates, and the Friedmann equation is integrated

to give R ∝ t 1/2

• After that, matter becomes most important and R ∝ t 2/3

• Then the value of k becomes important.
• k=0: The universe is flat. The expansion continues as

R ∝ t 2/3 .
• k=+1: The spatial universe is a closed, finite, 3-sphere with

 positive curvature. It reaches a maximum R and then
recontracts to R=0.
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• k=-1: The spatial universe is an open, infinite, 3-space
with negative curvature. For large t when the curvature
term, -k/R-2  , dominates, R=t.

• There is also the special case when the energy density is constant.
This comes from some kind of vacuum energy or from the cosmological
constant, which is just another name for the same thing. If it is very small,
it will eventually take over since it is a term in the Friedmann equation
that does not decrease with time. The other important possibility is that
it was once very large but is now zero. This leads to inflation. In either case,
the Friedmann equation gives

R ∝ e H t   with  a constant Hubble parameter  H =
8πGρ
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• So everything depends on ρ0  relative to ρc0. In discussing this,

it is convenient to use the ratio Ω ≡
ρ

ρc
 and its present value Ω0 .

• At the present time,
• ΩCMB  is tiny.
• The contribution from luminous matter like stars and everything else

that we have been able to observe directly is small
Ω LUM ≤ 0.01. This comes from observation.

• On the other hand, the nucleosynthesis calculations say that
the contribution from ordinary matter is Ω B ≈ 0.03 . This is the
first dark matter problem: Where is the ordinary matter that is in
Ω B   but has not been detected and counted in Ω LUM  ?

• From observations of the rotations and orbits of galaxies, one can
figure out, by using Newton’s laws, how much gravitating mass
there must be around to give those trajectories. That gives
Ω M ≥ 0.3. This is the second dark mater problem: What is the
gravitating matter in Ω M  that is not the ordinary matter in Ω B  ?

• Finally, observe that if there has been a period of inflation in the past
where R made a huge increase with ρ constant, then the curvature
term ( ∝ R-2  )  became negligible relative to the constant energy density.
So when inflation ended, the H2  and the energy terms in the Friedmann
equation were equal to very high accuracy. Thus, inflation predicts
Ω0 = 1. If that is correct, then there is another dark matter problem:
What and where is the stuff that fills in the difference between
Ω M ≈ 0.3   and   Ω0 = 1 ?

• The simple relation  v=Hd  is only approximately correct for small distances.
To see that, ask what H should go in there. Should it be H0  or H at the time the
light was emitted? Neither is correct. You have to account for the fact that
there is continuous expansion while the  light is traveling from the galaxy to us.
Let t0  be the present time and t the time of emission. If this difference is not
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too big, we can expand

R t( ) = R t0( ) + t − t0( ) ˙ R t 0( ) + 1

2
t − t 0( )2 ˙ ̇ R t0( ) +

= R t0( ) 1 + t − t0( )H0 + 1

2

˙ ̇ R t 0( )
R t0( )H0
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The coefficient appearing in the last term is essentially
what is called the deceleration parameter

qo ≡ −
˙ ̇ R t 0( )

R t0( )H0
2

  ,  which tells you about how the Hubble

parameter is changing with time. If gravity is slowing the rate of
expabsion, then the second time derivative of R is negative and
q0  is positive. After a long song and dance,
one finds an approximate relationship between the Hubble parameter,
the distance, and the redshift

H0d = z + 1
2

1 − q0( )z 2  . Observations of z and d allow H0  and q0  to be

determined. However, it is hard, and q0  is even less precisely known
than H0. Very new data, recently covered in the news, used supernovas
to get a new number for q0. It was negative so that ˙ ̇ R t 0( ) ≥ 0 ! What does

this mean? You can put the forms for R(t) that we have in the definition
of q0. That reveals that a critical universe has q0=1/2. Further, the only case that
gives negative q0  is an exponentially growing universe driven by a cosmological
constant!

Conclusion

This discussion of cosmology shows that basic physical principles, discovered here on the
earth, can be applied to universe as a whole to understand its behavior. This is an impressive
achievement. It is an illustration of one of the the most important aspects of physics, namely
its generality. From a small number of fundamental laws, a great deal can be understood.


