
Energy-Momentum in 4-vector notation

The main points here are the definition of the 4-vector of momentum
(sometimes called energy-momentum) and its transformation properties
using 4-vector notation. Just as the 3-vector notation that you have
already learned in studying nonrelativistic physics is a lot easier to deal with
than constantly writing out all the components, so also the 4-vector
notation saves work and is cleaner. But it is equivalent to writing out all the
components separately. You can get by with the version of things done in
the text, but some calculations are easier using the more powerful
notation.

First recall some of the stuff from the discussion of Lorentz
transformations in 4-vector notation. (You might want to review that
document before you read the rest of this.) We have introduced the
convenient notation with

x0  = t x1  = x x2  = y x3  = z
and defined the Minkowski metric

gµν =

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1
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Also remember the Einstein summation convention. In it, an index
repeated once up and once down is understood to be summed from 0 to
3.

The Lorentz transformation of the 4-vector of spacetime position can
also be written

′ x µ = Λµ
ν x ν  .

The sum on ν  is understood. This is four equations; one for each value of
µ  .There is also the same form for the transformation of the
infinitesimals with x replaced by dx. To get this to reproduce the Lorentz
transformation, we need to make the correct choice for Λ . You can check
that the following form works:
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Λµ
ν =

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1
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If the situation at hand does not conform to the conventions of aligned
axes and motion along the x-axis, then the form of Λ is more complicated.

The 4-vector of momentum has (not surprisingly) 4 components labeled
by the index µ  which runs from 0 to 3. It is defined by

Pµ = m
dx µ

dτ
  .

This is four expressions. While this definition has some nice properties, for
most purposes, it is more convenient to start from the form

P0 = γm P1 = γmv x P 2 = γmvy P3 = γmvz

which our text shows is the equivalent to the first form. In these relations,

γ = 1 1 − v2  with v the speed of the particle. It is also shown there that
it is correct to identify the time component of the 4-momentum with

energy so that  P0 = E   . The square of the 4-vector of momentum is
analogous to the spacetime interval

P2 = gµν Pµ Pν = P0( )2
− P1( )2

− P 2( )2
− P3( )2

= E 2 − P 
2

  .

(The summation convention is used twice, and only four of the sixteen
terms are nonzero.) If P is the 4-momentum of a particle of mass m, then

P2 = m 2 .

Now consider how the 4-momentum of a particle looks to two different
observers with different inertial frames. The home frame sees the 4-
vector P and the other frame sees P’. Our text shows that the 4-
momentum transforms just like the spacetime position 4-vector. Since we
already know that the expressions above for the transformation of x are
the same as the component equations for the Lorentz transformation, all
we have to do is to replace x by P to get

′ P µ = Λµ
ν Pν   .

If you use the form of Λ given above and the summation convention and
write out these four expressions, you will find that they are the same as
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the expressions in the book for the Lorentz transformation of the
momentum 4-vector.

So why do all of this? The answer is the same as that to the question of
why invent the notations algebra or calculus or 3-vectors: it makes
calculations easier. However, for the purpose of this class, you will be able
to get by without the 4-vector notation. Be warned though that without
it, you will not be able to follow major parts of the next two lectures
about general relativity and cosmology.


