
Four-vector notation

First a three-dimensional notation: The unit vectors in the three spatial directions are often
called ˆ i , ˆ j , ˆ k  . It is more common in physics to name them after the corresponding
coordinates ˆ x , ˆ y , ˆ z  . I usually use the later notation.

In four-dimensional spacetime, it is very convenient to introduce a new notation. The
familiar spacetime coordinates t, x, y, and z are given new names

x0 = t x1 = x x2 = y x3 = z .
The upper numbers 0, 1, 2, and 3 are superscripts not powers. For an unspecified value of
the superscript, Greek letters like µ and ν are used. They can take the values 0, 1, 2, or 3.
Thus xµ stands for any one of the spacetime coordinates.

This allows many expressions to be written in a more compact way. For example, consider
the infinitesimal spacetime interval

ds2 = dt 2 − dx2 − dy 2 − dz2
 .

To rewrite this, we first introduce the metric g  . It has two subscripts, each of which can

be 0, 1, 2, or 3. So there are sixteen elements. It is defined by

g =
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This means that  g11 = 1,  g12 = 0 ,  etc.
It allows us to write the infinitesimal spacetime interval as

ds2 = g
=0
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∑
=0

3

∑ dx dx = g dx dx  .

In the last version, the Einstein summation convention is used. In it, an index repeated once
up and once down is understood to be summed from 0 to 3.

At this point, it does not seem like much has really been done. No matter how efficient it
may be, it’s still just notation at this point. However, as soon as you want to describe a
space with curvature, you must use a metric. And the metric will have a form more
complicated that that above in order to account for the curvature. And then, when you want
to describe gravity, you must again use a metric, because in general relativity, the relativistic
theory of gravity, gravity is curvature!


