FIRST LAW AND RELATED RESULTS

First Law: $Q=\Delta U-W$
C_{P} defined: $Q=n C_{P} \Delta T$ for $P=$ constant
C_{V} defined: $Q=n C_{V} \Delta T$ for $V=$ constant
Ideal gas: $U=\frac{1}{\gamma-1} n R T \quad P V=n R T \quad \Delta U=n C_{V} \Delta T$

$$
C_{V}=\frac{1}{\gamma-1} R \quad C_{P}=\frac{\gamma}{\gamma-1} R \quad C_{P} / C_{V}=\gamma \quad C_{P}=C_{V}+R
$$

ADIABATIC: $Q=0$
$0=\Delta U-W \quad P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \quad T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1}$
$Q=0 \quad \Delta U=W=n C_{V} \Delta T \quad W=\left(P_{2} V_{2}-P_{1} V_{1}\right) /(\gamma-1)$
ISOBARIC: $P=$ constant
$Q=\Delta U-W \quad P \Delta V=n R \Delta T \quad V_{2} / V_{1}=T_{2} / T_{1}$
$Q=n C_{P} \Delta T \quad \Delta U=n C_{V} \Delta T \quad W=-P \Delta V$
ISOTHERMAL: $T=$ constant
$Q=\Delta U-W \quad \Delta(P V)=0 \quad P_{1} V_{1}=P_{2} V_{2}$
$Q=n R T \ln \left(V_{2} / V_{1}\right)=P_{1} V_{1} \ln \left(P_{1} / P_{2}\right) \quad \Delta U=0 \quad W=-Q$
ISOCHORIC: $V=$ constant
$Q=\Delta U \quad V \Delta P=n R \Delta T \quad P_{2} / P_{1}=T_{2} / T_{1}$
$Q=n C_{V} \Delta T \quad \Delta U=n C_{V} \Delta T \quad W=0$

