
Schroedinger equation in position basis

Review
We have the general form of the Schroedinger equation which holds in any basis

i
i,t( )
t

= i H j j,t( )
j

∑ .

In the case of two base states and a Hamiltonian with H11 = H22 = E0 and H12 = H21 = -A,
this describes a physical problem where an electron can be near either of two protons
and has an amplitude iA/  per unit time to jump between the two positions. The

Schroedinger equations are

i 1

t
= E0 1 − A 2

i 2

t
= − A 1 + E0 2

.

This led to two new base states with definite energy

+ = 1

2
1 − 2( )   with energy  E+ = E0 + A

− = 1

2
1 + 2( )   with energy  E− = E0 − A

  .

We are going to use the ideas and techniques from this example to find the form of the
Schroedinger equation in the definite-position basis.

Introduction
The main goal is to get the Schroedinger equation in the definite-position basis. In that
basis, the wave function ψ(x,t) is a function of x and t and is what we referred to a
couple weeks ago as “the wave function”. It’s a special case of the general framework
that we have already discussed. This version of the Schroedinger equation is the starting
point for many nonrelativistic calculations in atomic, molecular, nuclear, and condensed
matter physics. (Elementary particle physics is not on the list because it is mostly
relativistic and uses quantum field theory as a starting point.) Along the way, we will get
a glimpse of how electrons can move so easily in crystals.

We begin by considering an infinitely long line of discrete positions available to the
electron. Think of it as a line of protons or atoms or just abstract points. Label these
positions with the index i. When the electron is at position i, that is what we will call the
base state with label i written | i 〉

i-3 i-2 i-1 i+3i+2i+1

| i 〉

i
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Consider the part of the Schroedinger equation that gives the time derivative of the
amplitude to be at position i ψ(i,t) = 〈i | U(t) |ψ〉

i
i,t( )
t

= i H j j,t( )
j

∑

= i H i − 1 i − 1,t( ) + i H i i,t( ) + i H i + 1 i + 1,t( )
There is an infinite chain of equations like this—one for each value of i. Now we must say
something about H. There is an energy that we call E0 again that is associated with just
being at a site, and for now, it is the same for all sites. So 〈i | H | i〉 = E0. There is also an
amplitude that the electron can jump just one step either way. We call this 〈i | H | i+1〉 = 〈i
| H | i-1〉 = -A. Now the equation for ψ(i,t) is

i
i,t( )
t

= − A i − 1,t( ) + E0 i, t( ) − A i + 1,t( )
If there were no hopping (A = 0), the equations would uncouple and every ψ(i,t) would

have the simple time dependence e −iE0t /  so that that the electron would just sit in one
place and have energy E0. But with A ≠ 0, the i equation is coupled to the i+1 and
i-1 equations. The amplitude at site i changes due to the arrival of electron amplitude
from the two neighboring sites. For each i value, there is an equation like the one above,
and each is coupled to two others through the hopping terms.

That sets up the problem. Now lets solve it. It’s easier than it looks. As usual, we want
to know what the stationary states are. So we make the ansatz (guess)

i,t( ) = e −iEt / ai
(Note that in this ansatz, it is the same E for all i.) We put this into the equations and
try to find special values of E and the ai that make it a solution. As in the two-state
problem, i ∂/∂t becomes E, and all the exponentials cancel to leave us with algebraic

equations
Eai = − Aai−1 + E0 ai − Aai+1

These are solved by another ansatz

a j = eiKj .

(To avoid excessive confusion due to the two meanings of i, I changed the name of i to j.)
Put this ansatz in the equation above (with i→j) and get

EeiKj = −AeiK j−1( ) + E0 eiKj − AeiK j+1( )

Ee iKj = E0eiKj − AeiKj eiK + e−iK( )
E = E0 − 2 Acos K = ( E0 − 2 A) + 2 A 1 − cos K( )

This is remarkable on several counts. First, it was not that hard to find a solution to
what looked like a hard problem in the beginning. Second, there are a lot of solutions: one
for each value of K. For each choice of K, we get an energy value given above that is the
energy of a stationary state. The allowed values of K are the real numbers between -π
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and π. You can put in some value of K outside that range, but it is just repeating a choice
inside. That’s because

ei K+2( ) j = e iKj  .
The range of values for E is E0-2A to E0+2A. You should make a graph of E vs. K.  Third,
these wave functions are spread evenly over the whole line of points. The amplitudes for
the stationary states labeled with K and with energy E(K) = E0-2A + 2A(1-cosK) have the
variation

K j, t( ) = e −iEt / eiKj .
These resemble states of definite momentum more than they resemble states with the
electron stuck to some atom. To make that a bit more suggestive, we can label the sites
by their position coordinate xj. If we start at some point and call it j = 0 with position x0 =
0, and if the spacing between the sites is b, then xj = jb. Then rewrite the exponent Kj =
(K/b) xj = k xj = p xj/  with k≡K/b and p= k as usual. Thus the spatial part is

eiKj = e
ipx j /

 .
Look at the energy for small K.

E ≅ E0 − 2A( ) + AK 2 = E0 − 2 A( ) + Ab2

2
p2

The usual expression for the contribution of the kinetic energy to the total energy is
p2/(2m). So at small momentum, the electron is behaving like it has a mass m= 2/(2Ab2)

or Ab2= 2/(2m).

Even though there are all those atoms to bump into, the electron can still travel along
the line with definite momentum. This observation is the foundation of a great deal of
solid state physics. It can be pushed a little farther to give an understanding of the
relationships between conductors, insulators, and semiconductors. (We won’t do that
now. Something needs to be left for 9HE.)

Now let’s continue on the path toward the x-basis Schroedinger equation. Back up to the
point where we had

i
j,t( )
t

= − A j − 1,t( ) + E0 j, t( ) − A j + 1,t( )
and switch to using position xj instead of j. Also generalize a little by allowing E0 to
become a function of position. Change notation as follows

j → x j j ± 1 → x j±1 = x j ± b

j,t( ) → x j , t( )
E0 → E x j( )

,

so that the Schroedinger equation becomes
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i
x j , t( )
t

= E x j( ) x j , t( ) − A x j + b,t( ) + x j − b,t( )[ ]
= E x j( ) − 2 A[ ] x j ,t( ) − Ab 2 1

b2
x j + b, t( ) − 2 x j ,t( ) + x j − b, t( )[ ] 

 
 

 
 
 

.

The last step is to take the limit b → 0 so that the line of discrete points makes a better
and better approximation to the continuous line. In that limit, the term in the {} brackets
becomes the second derivative of ψ with respect to x. (To see that, think of the second
derivative as the derivative of the first derivative and use the definition of the
derivative as the limit of the change in the function divided by the change in the
argument twice.) We can choose E(x) and A as we please. Adjust A so that in the b → 0
limit Ab2→ 2/(2m) with m the mass of the electron as was the case for finite b but

small momentum. Adjust E(x) so that in the limit b → 0,
E(x) - 2A → V(x) with V(x) a function of x that is finite in the limit. Assemble the pieces
to get

i
x, t( )
t

= −
2

2m

2 x, t( )
x2

+ V x( ) x, t( ).

That’s it! It’s the Schroedinger equation in the position basis for a particle moving on a
line. The interpretation of the terms follows from a review of the derivation. The left
hand side is associated with the total energy. The first term on the right hand side is the
kinetic energy. (Notice that with the identification p = -i ∂/∂x that we had a hint of

before, the second derivative term is [p2/(2m)]ψ.) The second term on the right hand
side is the potential energy i.e. a contribution to the energy that varies with position.

To find the stationary states, use the old ansatz

E x, t( ) = e −iEt /
E x( )

to look for a state with definite E. When put in the Schroedinger equation this gives

E E x( ) = −
2

2m

2
E x( )

x 2
+ V x( ) E x( ) .

This is called the time-independent Schroedinger equation. It determines the allowed
values of E. The solutions ψE(x) give the spatial dependence of the wave functions with
definite energy E.


