Problem set 4

Q5 S.2 S.3 Q6 S.10

Consider the following setup:

1) Use the basic rules of quantum mechanics to write the amplitude $\langle A | S \rangle$ for a particle to be emitted at S and observed at A in terms of the more basic amplitudes $\langle 1 | S \rangle$, $\langle c | 2 \rangle$, $\langle A | b \rangle$, etc.

2) Suppose that the basic amplitudes have the values $\langle 1 | S \rangle = \langle 2 | S \rangle = 0.1$ $\langle a | 1 \rangle = \langle b | 1 \rangle = \langle c | 1 \rangle = 0.1i$ $\langle a | 2 \rangle = \langle b | 2 \rangle = \langle c | 2 \rangle = -0.1i$ $\langle A | a \rangle = \langle A | b \rangle = \langle A | c \rangle = 0.1 + 0.1i$ What is the numerical value for $\langle A | S \rangle$?

3) Suppose slit 2 is closed. What is the numerical value for $\langle A | S \rangle$?

4) In the case of 3, when 10^6 particles are emitted from S, what is the average number that arrive at A?