Problem set 5

1. Consider this setup:

```
S T S'
```

with T rotated relative to the two S's by $\pi / 2$ about the common y-axis of the three apparati. (The S,T amplitudes can be figured out from the formulas in Chapter 5.) This problem is trickier than it appears at first. A little care and thought are required.
a) What fraction of the particles that make it through the first S make it through the T ?
b) What fraction of the particles that make it through the first S make it through the second S?
c) What are the answers if the T apparatus is wide open?
2. Use the results for the "warm-up" U on pages 1 and 2 of the handout Quantum Mechanics II. Show that if the three φ angles are the same, but not necessarily zero, then the matix elements $\langle j| U|i\rangle$ of U are the same in the T basis as they are in the S basis.
3. Again using the "warm-up" example, suppose that $\varphi_{0}=0, \varphi_{+}=\varphi$, and $\varphi_{-}=-\varphi$. Get the probabilities $\left.P_{00}=\left|\left\langle O T^{\prime}\right| U\right| O T\right\rangle\left.\right|^{2}$ and $\left.P_{0+}=\left|\left\langle O T^{\prime}\right| U\right|+T\right\rangle\left.\right|^{2}$ as a function of φ and make a graph of each.
4. Suppose that in some basis, the Hamiltonian for a spin-1/2 (two-state system) has the matrix of amplitudes

$$
H_{i j}=\left(\begin{array}{cc}
-E_{0} & -A \\
-A & E_{0}
\end{array}\right),
$$

e.g. $\mathrm{H}_{12}=-\mathrm{A}$. What are the two energies in the definite-energy basis? What is the time dependence of each of these two definite-energy states? (Note you do not need to find the definite-energy states themselves to answer these questions.)
5. Suppose that in some basis, the Hamiltonian for a spin-1 (three-state system) has the matrix of amplitudes

$$
H_{i j}=\left(\begin{array}{ccc}
0 & A & 0 \\
A & 0 & A \\
0 & A & 0
\end{array}\right),
$$

e.g. $\mathrm{H}_{12}=\mathrm{A}$ and $\mathrm{H}_{13}=0$. What are the three energies in the definite-energy basis? What is the time dependence of each of these three definite-energy states? What physical situation might this describe? (Note you do not need to find the definite-energy states themselves to answer these questions.)

