PHASE SUM

This is a proof of the formula that was used in the derivation of the N source interference int ensity formula. The result is

$$
\sum_{n=0}^{N-1} \cos (A+n \phi)=\cos \left(A+\frac{N-1}{2} \phi\right) \frac{\sin \left(\frac{N \phi}{2}\right)}{\sin \left(\frac{\phi}{2}\right)} .
$$

To make the proof simple, it is best to use a complex representation
$e^{i \theta}=\cos \theta+i \sin \theta$.

The ot her thing to use is the partial geomet ric sum
$\sum_{n=0}^{N-1} x^{n}=\frac{1-x^{N}}{1-x}$.

The sum we want is the real part of the sum

$$
\begin{aligned}
& \sum_{n=0}^{N-1} e^{i(A+n \phi)}=e^{i A} \sum_{n=0}^{N-1}\left(e^{i \phi}\right)^{n}=e^{i A} \frac{1-e^{i N \phi}}{1-e^{i \phi}}= \\
& e^{i A} \frac{e^{i N \phi / 2}\left(e^{-i N \phi / 2}-e^{i N \phi / 2}\right)}{e^{i \phi / 2}\left(e^{-i \phi / 2}-e^{i \phi / 2}\right)}=e^{i\left(A+\frac{N-1}{2} \phi\right) \frac{\sin \frac{N \phi}{2}}{\sin \frac{\phi}{2}}} .
\end{aligned}
$$

'Not too hard.

