
Wave equation

The bottom line of this little story is the wave equation
∂ 2 f x, t( )

∂t 2
= v 2 ∂ 2 f x, t( )

∂x 2
 .

This is the differential equation that describes the propagation of dissipationless,
dispersionless waves. This derivation will be inductive and general. For each specific
case like tension waves on a string or sound waves in the air, it is also possible to
give a detailed deductive derivation that applies to that physical system.

We begin with the observation of waves on the hose or on the rods. We see that to a
fair approximation, they have two properties. First the waves do not change size as
they propagate. Actually they do slowly get smaller with time, but we can imagine
doing a better job of eliminating the “friction” so that they approach the limit of
propagating on indefinitely without getting smaller. This is the idealization of waves
without dissipation. Second we see two other properties that are equivalent. The
waves keep the same shape as they propagate, and all shapes have the same speed.
Waves with this property are said to have no dispersion. (For media with dispersion,
waves of different wavelength have different speeds. An example is light in glass.
That is why a prism can separate the colors of the rainbow in white light.) Our
demonstration examples are a better approximation to the idealization of no
dispersion than they are to that of no dissipation.

This means that if we know the shape of the wave at one time, then we know it at
later times by just moving it over by a distance vt.

This can be expressed in equations as follows: Suppose that at t=0, the shape of the
wave is given by a functions a(x) so that f(x,0) = a(x). What is f(x,t) at a later time?
Since it just gets moved over by vt, we have f(x,t) = f(x-vt,0) = a(x-vt). Why you ask
is the argument x-vt. Suppose the function a(x) has peak at x=x0. Then with the form
above, the peak will be where x-vt=x0 or x=x0+vt, i.e. the peak moves to the right with
speed v. All this is independent of the actual form of a(x). We assert that the equation
we are looking for must have the property that for any function a(⋅), a(x-vt) is a
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solution. But we don’t want to be stuck with waves going to the right only. Thus we
also insist that for any b(⋅), a left-moving wave of the form b(x+vt) must also be a
solution. With this input, we can figure out what the form of the differential equation
describing the waves must be.

∂f

∂x
= ′ a x − vt( )        

∂ 2 f

∂x 2
= ′ ′ a x − vt( )

∂f
∂t

= −v ′ a x − vt( )        
∂ 2 f

∂t 2
= v 2 ′ ′ a x − vt( )

so that       
∂ 2 f

∂t2
= v 2 ∂ 2 f

∂x 2
   as advertised.

A similar calculation with a(x-vt) replaced by b(x+vt) gives the same final equation
for f(x,t). (You might ask why I did not stop with the first order relation

∂f
∂t

= −v
∂f
∂x

. The answer is that that would have restricted me to right moving

waves only with a(x-vt) a solution but not b(x+vt).) The quantity v is not determined
in this approach. The speed of the waves is a characteristic of the particular medium
at hand and needs to be determined from a detailed understanding of the medium.

An important property of the wave equation is that it is linear (more precisely:
homogeneous of degree one in f). That is equivalent to the superposition principle. You
can easily check that if f1 and f2 are solutions to the wave equation, then any linear
combination of those two functions is also a solution.

The most general solution to the wave equation is a sum of an arbitrary right-moving
wave and an arbitrary left-moving wave: f(x,t) = a(x-vt) + b(x+vt). This is a lot of
solutions. How is the solution of interest in any particular case singled out? You have
already encountered a similar situation. The differential equation of Newton’s second
law, F=ma also has lots of solutions, and the right one for any particular case is
determined by the initial conditions of position and velocity. For the wave equation,
the situation is analogous. Given the initial configuration of the string f(x,0) and the

initial rate of change of the displacement 
∂f x,0( )

∂t
, the functions a and b can be

determined, and that gives the subsequent motion for all time.

For example, suppose that at t=0, the displacement is given by a function F(x) so that
f(x,0) = F(x). Suppose also that at t = 0, the string is not moving so that
∂f x,0( )

∂t
= 0 . Then with a little fiddling around to fix a and b, one finds that the

solution for all time is f(x,t) = [ F(x-vt) + F(x+vt) ]/2. You should be able to check that
this is a solution and that it has the right initial conditions. What does it tell you?
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That’s all great if you are stuck in just one spatial dimension. In the real world, we
have three spatial dimensions. How does this generalize? It turns out that it is about
as simple as it could be. The function that describes the disturbance is now a function
of x, y, z, and t, f(x,y,z,t). The three-dimensional wave equation is

∂ 2 f

∂t 2
= v2 ∂ 2 f

∂x 2
+ ∂ 2 f

∂y2
+ ∂ 2 f

∂z2

 

 
 
 

 

 
 
 

The combination of partial derivatives that appears on the right hand side comes up in
many places, so to save writing, it gets its own notation

∇2 ≡ ∂ 2

∂x 2
+ ∂ 2

∂y2
+ ∂ 2

∂z 2
 . Then the wave equation in three dimensions can be

written more easily as

∂ 2 f

∂t 2
= v2 ∇2 f  .

It is not quite so easy to find solutions to this, but here are a couple that you can
check. Let x  be the position three-vector, and let k  be a fixed vector. then

f = A sin k ⋅ x − ωt( )  is a solution if ω and the magnitude of the vector k  are
correctly related. What is the relation? This kind of solution is called a plane wave.
Describe it. Another possibility is a spherical wave

f = A
r

sin kr − ωt( )   with    r = x     and k a constant.

Of course that are many other possibilities.

Summary

Dissipationless, dispersionless waves in one dimension are solutions to the wave

equation. 
∂ 2 f x, t( )

∂t 2
= v 2 ∂ 2 f x, t( )

∂x 2
. It embodies the superposition principle so that if f1

and f2 are solutions then so are all linear combinations of f1 and f2. The general
solution has the form f(x,t) = a(x-vt) + b(x+vt).


